The Correlated Component Analysis (CCA) allows us to estimate how the different diffuse emissions mix in CMB experiments, exploiting also complementary information from other surveys. It is especially useful to deal with possible additional components. An application of CCA to WMAP maps assuming that only the canonical Galactic emissions are present, highlights the widespread presence of a spectrally flat synchrotron component, largely uncorrelated with the synchrotron template, suggesting that an additional foreground is indeed required. We have tested various spectral shapes for such component, namely a power law as expected if it is flat synchrotron, and two spectral shapes that may fit the spinning dust emission: a parabola in the logS - log(frequency) plane, and a grey body. Quality tests applied to the reconstructed CMB maps clearly disfavour two of the models. The CMB power spectra, estimated from CMB maps reconstructed exploiting the three surviving foreground models, are generally consistent with the WMAP ones, although at least one of them gives a significantly higher quadrupole moment than found by the WMAP team. Taking foreground modeling uncertainties into account, we find that the mean quadrupole amplitude for the three good models is less than 1 sigma below the expectation from the standard LambdaCDM model. Also the other reported deviations from model predictions are found not to be statistically significant, except for the excess power at l~40. We confirm the evidence for a marked North-South asymmetry in the large scale (l < 20) CMB anisotropies. We also present a first, albeit preliminary, all-sky map of the anomalous component.