No Arabic abstract
We report on measurements of dynamical suppression of inter-well tunneling of a Bose-Einstein condensate (BEC) in a strongly driven optical lattice. The strong driving is a sinusoidal shaking of the lattice corresponding to a time-varying linear potential, and the tunneling is measured by letting the BEC freely expand in the lattice. The measured tunneling rate is reduced and, for certain values of the shaking parameter, completely suppressed. Our results are in excellent agreement with theoretical predictions. Furthermore, we have verified that in general the strong shaking does not destroy the phase coherence of the BEC, opening up the possibility of realizing quantum phase transitions by using the shaking strength as the control parameter.
We report time-resolved measurements of Landau-Zener tunneling of Bose-Einstein condensates in accelerated optical lattices, clearly resolving the step-like time dependence of the band populations. Using different experimental protocols we were able to measure the tunneling probability both in the adiabatic and in the diabatic bases of the system. We also experimentally determine the contribution of the momentum width of the Bose condensates to the width of the tunneling steps and discuss the implications for measuring the jump time in the Landau-Zener problem.
We report on measurements of resonantly enhanced tunneling of Bose-Einstein condensates loaded into an optical lattice. By controlling the initial conditions of our system we were able to observe resonant tunneling in the ground and the first two excited states of the lattice wells. We also investigated the effect of the intrinsic nonlinearity of the condensate on the tunneling resonances.
By moving the pivot of a pendulum rapidly up and down one can create a stable position with the pendulums bob above the pivot rather than below it. This surprising and counterintuitive phenomenon is a widespread feature of driven systems and carries over into the quantum world. Even when the static properties of a quantum system are known, its response to an explicitly time-dependent variation of its parameters may be highly nontrivial, and qualitatively new states can appear that were absent in the original system. In quantum mechanics the archetype for this kind of behaviour is an atom in a radiation field, which exhibits a number of fundamental phenomena such as the modification of its g-factor in a radio-frequency field and the dipole force acting on an atom moving in a spatially varying light field. These effects can be successfully described in the so-called dressed atom picture. Here we show that the concept of dressing can also be applied to macroscopic matter waves, and that the quantum states of dressed matter waves can be coherently controlled. In our experiments we use Bose-Einstein condensates in driven optical lattices and demonstrate that the many-body state of this system can be adiabatically and reversibly changed between a superfluid and a Mott insulating state by varying the amplitude of the driving. Our setup represents a versatile testing ground for driven quantum systems, and our results indicate the direction towards new quantum control schemes for matter waves.
We demonstrate coherent control of donor wavefunctions in phosphorous-doped silicon. Our experiments take advantage of a free electron laser to stimulate and observe photon echoes from, and Rabi oscillations between the ground and first excited state of P donors in Si.
We study the non-equilibrium dynamics of cold atoms held in an optical lattice potential. The expansion of an initially confined atom cloud occurs in two phases: an initial quadratic expansion followed by a ballistic behaviour at long times. Accounting for this gives a good description of recent experimental results, and provides a robust method to extract the effective intersite tunneling from time-of-flight measurements.