Do you want to publish a course? Click here

Asymptotic enumeration of sparse nonnegative integer matrices with specified row and column sums

144   0   0.0 ( 0 )
 Added by Brendan McKay
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

Let svec = (s_1,...,s_m) and tvec = (t_1,...,t_n) be vectors of nonnegative integer-valued functions of m,n with equal sum S = sum_{i=1}^m s_i = sum_{j=1}^n t_j. Let M(svec,tvec) be the number of m*n matrices with nonnegative integer entries such that the i-th row has row sum s_i and the j-th column has column sum t_j for all i,j. Such matrices occur in many different settings, an important example being the contingency tables (also called frequency tables) important in statistics. Define s=max_i s_i and t=max_j t_j. Previous work has established the asymptotic value of M(svec,tvec) as m,ntoinfty with s and t bounded (various authors independently, 1971-1974), and when svec,tvec are constant vectors with m/n,n/m,s/n >= c/log n for sufficiently large (Canfield and McKay, 2007). In this paper we extend the sparse range to the case st=o(S^(2/3)). The proof in part follows a previous asymptotic enumeration of 0-1 matrices under the same conditions (Greenhill, McKay and Wang, 2006). We also generalise the enumeration to matrices over any subset of the nonnegative integers that includes 0 and 1.



rate research

Read More

We provide bivariate asymptotics for the poly-Bernoulli numbers, a combinatorial array that enumerates lonesum matrices, using the methods of Analytic Combinatorics in Several Variables (ACSV). For the diagonal asymptotic (i.e., for the special case of square lonesum matrices) we present an alternative proof based on Parsevals identity. In addition, we provide an application in Algebraic Statistics on the asymptotic ML-degree of the bivariate multinomial missing data problem, and we strengthen an existing result on asymptotic enumeration of permutations having a specified excedance set.
We consider several families of binomial sum identities whose definition involves the absolute value function. In particular, we consider centered double sums of the form [S_{alpha,beta}(n) := sum_{k,;ell}binom{2n}{n+k}binom{2n}{n+ell} |k^alpha-ell^alpha|^beta,] obtaining new results in the cases $alpha = 1, 2$. We show that there is a close connection between these double sums in the case $alpha=1$ and the single centered binomial sums considered by Tuenter.
106 - Nikita Zhivotovskiy 2021
We consider the deviation inequalities for the sums of independent $d$ by $d$ random matrices, as well as rank one random tensors. Our focus is on the non-isotropic case and the bounds that do not depend explicitly on the dimension $d$, but rather on the effective rank. In a rather elementary and unified way, we show the following results: 1) A deviation bound for the sums of independent positive-semi-definite matrices of any rank. This result generalizes the dimension-free bound of Koltchinskii and Lounici [Bernoulli, 23(1): 110-133, 2017] on the sample covariance matrix in the sub-Gaussian case. 2) Dimension-free bounds for the operator norm of the sums of random tensors of rank one formed either by sub-Gaussian or log-concave random vectors. This extends the result of Guedon and Rudelson [Adv. in Math., 208: 798-823, 2007]. 3) A non-isotropic version of the result of Alesker [Geom. Asp. of Funct. Anal., 77: 1--4, 1995] on the concentration of the norm of sub-exponential random vectors. 4) A dimension-free lower tail bound for sums of positive semi-definite matrices with heavy-tailed entries, sharpening the bound of Oliveira [Prob. Th. and Rel. Fields, 166: 1175-1194, 2016]. Our approach is based on the duality formula between entropy and moment generating functions. In contrast to the known proofs of dimension-free bounds, we avoid Talagrands majorizing measure theorem, as well as generic chaining bounds for empirical processes. Some of our tools were pioneered by O. Catoni and co-authors in the context of robust statistical estimation.
We propose a Bayesian methodology for estimating spiked covariance matrices with jointly sparse structure in high dimensions. The spiked covariance matrix is reparametrized in terms of the latent factor model, where the loading matrix is equipped with a novel matrix spike-and-slab LASSO prior, which is a continuous shrinkage prior for modeling jointly sparse matrices. We establish the rate-optimal posterior contraction for the covariance matrix with respect to the operator norm as well as that for the principal subspace with respect to the projection operator norm loss. We also study the posterior contraction rate of the principal subspace with respect to the two-to-infinity norm loss, a novel loss function measuring the distance between subspaces that is able to capture element-wise eigenvector perturbations. We show that the posterior contraction rate with respect to the two-to-infinity norm loss is tighter than that with respect to the routinely used projection operator norm loss under certain low-rank and bounded coherence conditions. In addition, a point estimator for the principal subspace is proposed with the rate-optimal risk bound with respect to the projection operator norm loss. These results are based on a collection of concentration and large deviation inequalities for the matrix spike-and-slab LASSO prior. The numerical performance of the proposed methodology is assessed through synthetic examples and the analysis of a real-world face data example.
64 - Alexander M. Haupt 2018
We first enumerate a generalization of domino towers that was proposed by Tricia M. Brown (J. Integer Seq. 20 (2017)), which we call S-omino towers. We establish equations that the generating function must satisfy and then apply the Lagrange inversion formula to find a closed formula for the number of towers. We also show a connection to generalized Dyck paths and provide an explicit bijection. Finally, we consider the set of row-convex k-omino towers, introduced by Brown, and calculate an exact generating function.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا