No Arabic abstract
In this article, we develop a formalism which is different from the standard lensing scenario and is necessary for understanding lensing by gravitational fields which arise as solutions of the effective Einstein equations on the brane. We obtain general expressions for measurable quantities such as time delay, deflection angle, Einstein ring and magnification. Subsequently, we estimate the deviations (relative to the standard lensing scenario) in the abovementioned quantities by considering the line elements for clusters and spiral galaxies obtained by solving the effective Einstein equations on the brane. Our analysis reveals that gravitational lensing can be a useful tool for testing braneworld gravity as well as the existence of extra dimensions.
We discuss the cosmological evolution of a braneworld in five dimensional Gauss-Bonnet gravity. Our discussion allows the fifth (bulk) dimension to be space-like as well as time-like. The resulting equations of motion have the form of a cubic equation in the (H^2,(rho+sigma)^2) plane, where sigma is the brane tension and rho is the matter density. This allows us to conduct a comprehensive pictorial analysis of cosmological evolution for the Gauss-Bonnet brane. The many interesting properties of this braneworld include the possibility of accelerated expansion at late times. For a finite region in parameter space the accelerated expansion can be phantom-like so that w < -1. At late times, this branch approaches de Sitter space (w = -1) and avoids the big-rip singularities usually present in phantom models. For a time-like extra dimension the Gauss-Bonnet brane can bounce and avoid the initial singularity.
Both massless light ray and objects with nonzero mass experience trajectory bending in a gravitational field. In this work the bending of trajectories of massive objects in a Schwarzschild spacetime and the corresponding gravitational lensing (GL) effects are studied. A particle sphere for Schwarzschild black hole (BH) is found with its radius a simple function of the particle velocity and proportional to the BH mass. A single master formula for both the massless and massive particle bending angle is found, in the form of an elliptic function depending only on the velocity and impact parameter. This bending angle is expanded in both large and small velocity limits and large and small impact parameter limits. The corresponding deflection angle for weak and strong GL of massive particles are analyzed, and their corrections to the light ray deflection angles are obtained. The dependence of the deflection angles on the source angle and the particle speed is investigated. Finally we discuss the potential applications of the results in hypervelocity star observations and in determining mass/mass hierarchy of slow particles/objects.
We consider the gravitational radiation in conformal gravity theory. We perturb the metric from flat Mikowski space and obtain the wave equation after introducing the appropriate transformation for perturbation. We derive the effective energy-momentum tensor for the gravitational radiation, which can be used to determine the energy carried by gravitational waves.
In order to detect high frequency gravitational waves, we need a new detection method. In this paper, we develop a formalism for a gravitational wave detector using magnons in a cavity. Using Fermi normal coordinates and taking the non-relativistic limit, we obtain a Hamiltonian for magnons in gravitational wave backgrounds. Given the Hamiltonian, we show how to use the magnons for detecting high frequency gravitational waves. Furthermore, as a demonstration of the magnon gravitational wave detector, we give upper limits on GHz gravitational waves by utilizing known results of magnon experiments for an axion dark matter search.
We study new FRW type cosmological models of modified gravity treated on the background of Palatini approach. These models are generalization of Einstein gravity by the presence of a scalar field non-minimally coupled to the curvature. The models employ Starobinskys term in the Lagrangian and dust matter. Therefore, as a by-product, an exhausted cosmological analysis of general relativity amended by quadratic term is presented. We investigate dynamics of our models, confront them with the currently available astrophysical data as well as against LCDM model. We have used the dynamical system methods in order to investigate dynamics of the models. It reveals the presence of a final sudden singularity. Fitting free parameters we have demonstrated by statistical analysis that this class of models is in a very good agreement with the data (including CMB measurements) as well as with the standard LCDM model predictions. One has to use statefinder diagnostic in order to discriminate among them. Therefore Bayesian methods of model selection have been employed in order to indicate preferred model. Only in the light of CMB data the concordance model remains invincible.