Do you want to publish a course? Click here

Resolving the innermost parsec of Centaurus A at mid-infrared wavelengths

90   0   0.0 ( 0 )
 Added by Klaus Meisenheimer
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of interferometric observations of Centaurus A with the MID-infrared Interferometer (MIDI) at ESOs VLTI telescope array. The interferometric measurements are spectrally resolved (R = 30) in the wavelength range 8 to 13 micron. Their spatial resolution reaches 15 mas at the shortest wavelengths. Supplementary observations were obtained in the near-infrared with the adaptive optics instrument NACO, and at mm wavelengths with SEST and JCMT. We find that he mid-infrared emission from the core of Centaurus A is dominated by an unresolved point source (<10 mas). Observations with baselines orientated perpendicular to the radio jet reveal an extended component which can be interpreted as a geometrically thin, dusty disk, the axis of which is aligned with the radio jet. Its diameter is about 0.6 pc. We argue, that the unresolved emission is dominated by a synchrotron source. Its overall spectrum is characterized by a u^{-0.36} power-law which cuts off exponentially towards high frequencies at 8x10^{13} Hz and becomes optically thick at u < 45 GHz. Based on a Synchrotron Self Compton (SSC) interpretation for the gamma-ray emission, we find a magnetic field strength of 26 microTesla and a maximum energy of relativistic electrons of gamma_c = E_c/m_e c^2 = 8500. Near gamma_c, the acceleration time scale is 4 days, in good agreement with the fastest X-ray variations. Our SSC model argues for an upper limit for the bulk Lorentz factor < 2.5, at variance with the concept of a mis-directed BL Lac object. We estimate a thermal core luminosity of 1.3x10^{34} W, intermediate between the values for highly efficiently accreting AGN (e.g. Seyfert galaxies) and those of typical FR I radio galaxies.



rate research

Read More

114 - V. Ravi 2011
We present an interferometric study of the continuum surface of the red supergiant star Betelgeuse at 11.15 microns wavelength, using data obtained with the Berkeley Infrared Spatial Interferometer each year between 2006 and 2010. These data allow an investigation of an optically thick layer within 1.4 stellar radii of the photosphere. The layer has an optical depth of ~1 at 11.15 microns, and varies in temperature between 1900 K and 2800 K and in outer radius between 1.16 and 1.36 stellar radii. Electron-hydrogen atom collisions contribute significantly to the opacity of the layer. The layer has a non-uniform intensity distribution that changes between observing epochs. These results indicate that large-scale surface convective activity strongly influences the dynamics of the inner atmosphere of Betelgeuse, and mass-loss processes.
73 - D. E. Anderson 2021
Infrared observations probe the warm gas in the inner regions of planet-forming disks around young sun-like, T Tauri stars. In these systems, H$_2$O, OH, CO, CO$_2$, C$_2$H$_2$, and HCN have been widely observed. However, the potentially abundant carbon carrier CH$_4$ remains largely unconstrained. The James Webb Space Telescope (JWST) will be able to characterize mid-infrared fluxes of CH$_4$ along with several other carriers of carbon and oxygen. In anticipation of the JWST mission, we model the physical and chemical structure of a T Tauri disk to predict the abundances and mid-infrared fluxes of observable molecules. A range of compositional scenarios are explored involving the destruction of refractory carbon materials and alterations to the total elemental (volatile and refractory) C/O ratio. Photon-driven chemistry in the inner disk surface layers largely destroys the initial carbon and oxygen carriers. This causes models with the same physical structure and C/O ratio to have similar steady state surface compositions, regardless of the initial chemical abundances. Initial disk compositions are better preserved in the shielded inner disk midplane. The degree of similarity between the surface and midplane compositions in the inner disk will depend on the characteristics of vertical mixing at these radii. Our modeled fluxes of observable molecules respond sensitively to changes in the disk gas temperature, inner radius, and the total elemental C/O ratio. As a result, mid-infrared observations of disks will be useful probes of these fundamental disk parameters, including the C/O ratio, which can be compared to values determined for planetary atmospheres.
We present results of high-resolution imaging toward HL Tau by the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We have obtained 1.3 and 2.7 mm dust continua with an angular resolution down to 0.13 arc second. Through model fitting to the two wavelength data simultaneously in Bayesian inference using a flared viscous accretion disk model, we estimate the physical properties of HL Tau, such as density distribution, dust opacity spectral index, disk mass, disk size, inclination angle, position angle, and disk thickness. HL Tau has a circumstellar disk mass of 0.13 solar mass, a characteristic radius of 79 AU, an inclination of 40 degree, and a position angle of 136 degree. Although a thin disk model is preferred by our two wavelength data, a thick disk model is needed to explain the high mid- and far-infrared emission of the HL Tau spectral energy distribution. This could imply large dust grains settled down on the mid plane with fine dust grains mixed with gas. The HL Tau disk is likely gravitationally unstable and can be fragmented between 50 and 100 AU of radius. However, we did not detect dust thermal continuum supporting the protoplanet candidate claimed by a previous study using observations of the Very Large Array at 1.3 cm.
209 - Woojin Kwon 2015
We present continuum observations at 1.3 and 2.7 mm using the Combined Array for Research in Millimeter-wave Astronomy (CARMA) toward six protoplanetary disks in the Taurus molecular cloud: CI Tau, DL Tau, DO Tau, FT Tau, Haro 6-13, and HL Tau. We constrain physical properties of the disks with Bayesian inference using two disk models; flared power-law disk model and flared accretion disk model. Comparing the physical properties, we find that the more extended disks are less flared and that the dust opacity spectral index (beta) is smaller in the less massive disks. In addition, disks with a steeper mid-plane density gradient have a smaller beta, which suggests that grains grow and radially move. Furthermore, we compare the two disk models quantitatively and find that the accretion disk model provides a better fit overall. We also discuss the possibilities of substructures on three extended protoplanetary disks.
Spitzer IRAC mid-infrared photometry is presented for the globular cluster (GC) systems of the NGC 5128 (Centaurus A) and NGC 4594 (Sombrero) galaxies. Existing optical photometric and spectroscopic are combined with this new data in a comprehensive optical to mid-IR colour catalogue of 260 GCs. Empirical colour-metallicity relationships are derived for all optical to mid-IR colour combinations. These colours prove to be very effective quantities to test the photometric predictions of simple stellar population (SSP) models. In general, four SSP models show larger discrepancies between each other and the data at bluer wavelengths, especially at high metallicities. Such differences become very important when attempting to use colour-colour model predictions to constrain the ages of stellar populations. Furthermore, the age-substructure determined from colour-colour diagrams and 91 NGC 5128 GCs with spectroscopic ages from Beasley et al. (2008) are inconsistent, suggesting any apparent GC system age-substructure implied by a colour-colour analysis must be verified independently. Unlike blue wavebands, certain optical to mid-IR colours are insensitive to the flux from hot horizontal branch stars and thus provide an excellent metallicity proxy. The NGC 5128 GC system shows strong bimodality in the optical R-band to mid-IR colour distributions, hence proving it is bimodal in metallicity. In this new colour space, a colour-magnitude trend, a blue tilt, is found in the NGC 5128 metal-poor GC data. The NGC 5128 young GCs do not contribute to this trend. [abridged]
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا