Fermi surface pockets in ortho-II YBa$_2$Cu$_3$O$_{6.5}$: the origin of quantum oscillations?


Abstract in English

In this paper we explore whether the quantum oscillation signals recently observed in ortho-II YBa$_2$Cu$_3$O$_{6.5}$ may be explained by conventional density functional band-structure theory. Our calculations show that the Fermi surface of YBa$_2$Cu$_3$O$_{6.5}$ is extremely sensitive to small shifts in the relative positions of the bands. With rigid band shifts of around 30 meV small tubular pockets of Fermi surface develop around the Y point in the Brillouin zone. The cross-sectional areas and band masses of the quantum oscillatory orbits on these pockets are close to those observed. The difference between the bandstructure of YBa$_2$Cu$_3$O$_{6.5}$ and YBa$_2$Cu$_4$O$_{8}$ are discussed.

Download