We uncover previously unknown properties of the family of periodic superstable cycles in unimodal maps characterized each by a Lyapunov exponent that diverges to minus infinity. Amongst the main novel properties are the following: i) The basins of attraction for the phases of the cycles develop fractal boundaries of increasing complexity as the period-doubling structure advances towards the transition to chaos. ii) The fractal boundaries, formed by the preimages of the repellor, display hierarchical structures organized according to exponential clusterings that manifest in the dynamics as sensitivity to the final state and transient chaos. iii) There is a functional composition renormalization group (RG) fixed-point map associated to the family of supercycles. iv) This map is given in closed form by the same kind of $q$-exponential function found for both the pitchfork and tangent bifurcation attractors. v) There is a final stage ultra-fast dynamics towards the attractor with a sensitivity to initial conditions that decreases as an exponential of an exponential of time.