Do you want to publish a course? Click here

Muon spin rotation measurements of the superfluid density in fresh and aged superconducting PuCoGa$_5$

132   0   0.0 ( 0 )
 Added by Kazuki Ohishi
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have measured the temperature dependence and magnitude of the superfluid density $rho_{rm s}(T)$ via the magnetic field penetration depth $lambda(T)$ in PuCoGa$_5$ (nominal critical temperature $T_{c0} = 18.5$ K) using the muon spin rotation technique in order to investigate the symmetry of the order parameter, and to study the effects of aging on the superconducting properties of a radioactive material. The same single crystals were measured after 25 days ($T_c = 18.25$ K) and 400 days ($T_c = 15.0$ K) of aging at room temperature. The temperature dependence of the superfluid density is well described in both materials by a model using d-wave gap symmetry. The magnitude of the muon spin relaxation rate $sigma$ in the aged sample, $sigmapropto 1/lambda^2proptorho_s/m^*$, where $m^*$ is the effective mass, is reduced by about 70% compared to fresh sample. This indicates that the scattering from self-irradiation induced defects is not in the limit of the conventional Abrikosov-Gorkov pair-breaking theory, but rather in the limit of short coherence length (about 2 nm in PuCoGa$_5$) superconductivity.



rate research

Read More

Transverse-field muon spin rotation measurements of overdoped La2-xSrxCuO4 reveal a large broadening of the local magnetic field distribution in response to applied field, persisting to high temperatures. The field-response is approximately Curie-Weiss like in temperature and is largest for the highest doping investigated. Such behaviour is contrary to the canonical Fermi-liquid picture commonly associated with the overdoped cuprates and implies extensive heterogeneity in this region of the phase diagram. A possible explanation for the result lies in regions of staggered magnetization about dopant cations, analogous to what is argued to exist in underdoped systems.
PuCoGa$_5$ has emerged as a prototypical heavy-fermion superconductor, with its transition temperature ($T_csimeq18.5$ K) being the highest amongst such materials. Nonetheless, a clear description as to what drives the superconducting pairing is still lacking, rendered complicated by the notoriously intricate nature of plutoniums 5$f$ valence electrons. Here, we present a detailed $^{69,71}$Ga nuclear quadrupole resonance (NQR) study of PuCoGa$_5$, concentrating on the systems normal state properties near to $T_c$ and aiming to detect distinct signatures of possible pairing mechanisms. In particular, the quadrupole frequency and spin-lattice relaxation rate were measured for the two crystallographically inequivalent Ga sites and for both Ga isotopes, in the temperature range 1.6 K - 300 K. No evidence of significant charge fluctuations is found from the NQR observables. On the contrary, the low-energy dynamics is dominated by anisotropic spin fluctuations with strong, nearly critical, in-plane character, which are effectively identical to the case of the sister compound PuCoIn$_5$. These findings are discussed within the context of different theoretical proposals for the unconventional pairing mechanism in heavy-fermion superconductors.
Using the transverse field muon spin relaxation technique we measure the temperature dependence of the magnetic field penetration depth $lambda$, in the Na$_{x}$CoO$_{2}cdot y$H$_{2}$O system. We find that $lambda,$ which is determined by superfluid density $n_{s}$ and the effective mass $m^{ast}$, is very small and on the edge of the TF-$mu$SR sensitivity. Nevertheless, the results indicate that the order parameter in this system has nodes and that it obeys the Uemura relation. By comparing $lambda$ with the normal state electron density we conclude that $m^{ast}$ of the superconductivity carrier is 70 times larger than the mass of bare electrons.
Muon spin rotation and relaxation ($mu$SR) experiments have been carried out to characterize magnetic and superconducting ground states in the Pr$_{1-x}$Nd$_x$Os$_4$Sb$_{12}$ alloy series. In the ferromagnetic end compound NdOs$_4$Sb$_{12}$ the spontaneous local field at positive-muon ($mu^+$) sites below the ordering temperature $T_C$ is greater than expected from dipolar coupling to ferromagnetically aligned Nd$^{3+}$ moments, indicating an additional indirect RKKY-like transferred hyperfine mechanism. For 0.45 $le x le$ 0.75, $mu^+$ spin relaxation rates in zero and weak longitudinal applied fields indicate that static fields at $mu^+$ sites below $T_C$ are reduced and strongly disordered. We argue this is unlikely to be due to reduction of Nd$^{3+}$ moments, and speculate that the Nd$^{3+}$-$mu^+$ interaction is suppressed and disordered by Pr doping. In an $x$ = 0.25 sample, which is superconducting below $T_c$ = 1.3 K, there is no sign of spin freezing (static Nd$^{3+}$ magnetism), ordered or disordered, down to 25 mK. Dynamic $mu^+$ spin relaxation is strong, indicating significant Nd-moment fluctuations. The $mu^+$ diamagnetic frequency shift and spin relaxation in the superconducting vortex-lattice phase decrease slowly below $T_c$, suggesting pair breaking and/or possible modification of Fermi-liquid renormalization by Nd spin fluctuations. For 0.25 $le x le$ 0.75, the $mu$SR data provide evidence against phase separation; superconductivity and Nd$^{3+}$ magnetism coexist on the atomic scale.
257 - W.H.Brito , S. Choi , Y. X. Yao 2017
We investigate the normal state of the superconducting compound PuCoGa$_5$ using the combination of density functional theory (DFT) and dynamical mean field theory (DMFT), with the continuous time quantum Monte Carlo (CTQMC) and the vertex-corrected one-crossing approximation (OCA) as the impurity solvers. Our DFT+DMFT(CTQMC) calculations suggest a strong tendency of Pu-5$f$ orbitals to differentiate at low temperatures. The renormalized 5$f_{5/2}$ states exhibit a Fermi-liquid behavior whereas one electron in the 5$f_{7/2}$ states is at the edge of a Mott localization. We find that the orbital differentiation is manifested as the removing of 5$f_{7/2}$ spectral weight from the Fermi level relative to DFT. We corroborate these conclusions with DFT+DMFT(OCA) calculations which demonstrate that 5$f_{5/2}$ electrons have a much larger Kondo scale than the 5$f_{7/2}$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا