Do you want to publish a course? Click here

Two Gaps Make a High Temperature Superconductor?

232   0   0.0 ( 0 )
 Added by Andrea Damascelli
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the keys to the high-temperature superconductivity puzzle is the identification of the energy scales associated with the emergence of a coherent condensate of superconducting electron pairs. These might provide a measure of the pairing strength and of the coherence of the superfluid, and ultimately reveal the nature of the elusive pairing mechanism in the superconducting cuprates. To this end, a great deal of effort has been devoted to investigating the connection between the superconducting transition temperature Tc and the normal-state pseudogap crossover temperature T*. Here we present a review of a large body of experimental data that suggests a coexisting two-gap scenario, i.e. superconducting gap and pseudogap, over the whole superconducting dome.



rate research

Read More

The nature of the pseudogap state, observed above the superconducting transition temperature TC in many high temperature superconductors, is the center of much debate. Recently, this discussion has focused on the number of energy gaps in these materials. Some experiments indicate a single energy gap, implying that the pseudogap is a precursor state. Others indicate two, suggesting that it is a competing or coexisting phase. Here we report on temperature dependent scanning tunneling spectroscopy of Pb-Bi2Sr2CuO6+x. We have found a new, narrow, homogeneous gap that vanishes near TC, superimposed on the typically observed, inhomogeneous, broad gap, which is only weakly temperature dependent. These results not only support the two gap picture, but also explain previously troubling differences between scanning tunneling microscopy and other experimental measurements.
The spectral energy gap is an important signature that defines states of quantum matter: insulators, density waves, and superconductors have very different gap structures. The momentum resolved nature of angle-resolved photoemission spectroscopy (ARPES) makes it a powerful tool to characterize spectral gaps. ARPES has been instrumental in establishing the anisotropic d-wave structure of the superconducting gap in high-transition temperature (Tc) cuprates, which is different from the conventional isotropic s-wave superconducting gap. Shortly afterwards, ARPES demonstrated that an anomalous gap above Tc, often termed the pseudogap, follows a similar anisotropy. The nature of this poorly understood pseudogap and its relationship with superconductivity has since become the focal point of research in the field. To address this issue, the momentum, temperature, doping, and materials dependence of spectral gaps have been extensively examined with significantly improved instrumentation and carefully matched experiments in recent years. This article overviews the current understanding and unresolved issues of the basic phenomenology of gap hierarchy. We show how ARPES has been sensitive to phase transitions, has distinguished between orders having distinct broken electronic symmetries, and has uncovered rich momentum and temperature dependent fingerprints reflecting an intertwined & competing relationship between the ordered states and superconductivity that results in multiple phenomenologically-distinct ground states inside the superconducting dome. These results provide us with microscopic insights into the cuprate phase diagram.
The pseudogap is one of the most pervasive phenomena of high temperature superconductors. It is attributed either to incoherent Cooper pairing setting in above the superconducting transition temperature Tc, or to a hidden order parameter competing with superconductivity. Here we use inelastic neutron scattering from underdoped YBa(2)Cu(3)O(6.6) to show that the dispersion relations of spin excitations in the superconducting and pseudogap states are qualitatively different. Specifically, the extensively studied hour glass shape of the magnetic dispersions in the superconducting state is no longer discernible in the pseudogap state and we observe an unusual vertical dispersion with pronounced in-plane anisotropy. The differences between superconducting and pseudogap states are thus more profound than generally believed, suggesting a competition between these two states. Whereas the high-energy excitations are common to both states and obey the symmetry of the copper oxide square lattice, the low-energy excitations in the pseudogap state may be indicative of collective fluctuations towards a state with broken orientational symmetry predicted in theoretical work.
The mysterious pseudogap phase of cuprate superconductors ends at a critical hole doping level p* but the nature of the ground state below p* is still debated. Here, we show that the genuine nature of the magnetic ground state in La2-xSrxCuO4 is hidden by competing effects from superconductivity: applying intense magnetic fields to quench superconductivity, we uncover the presence of glassy antiferromagnetic order up to the pseudogap boundary p* ~ 0.19, and not above. There is thus a quantum phase transition at p*, which is likely to underlie highfield observations of a fundamental change in electronic properties across p*. Furthermore, the continuous presence of quasi-static moments from the insulator up to p* suggests that the physics of the doped Mott insulator is relevant through the entire pseudogap regime and might be more fundamentally driving the transition at p* than just spin or charge ordering.
The recent observations of superconductivity at temperatures up to 55K in compounds containing layers of iron arsenide have revealed a new class of high temperature superconductors that show striking similarities to the more familiar cuprates. In both series of compounds, the onset of superconductivity is associated with the suppression of magnetic order by doping holes and/or electrons into the band leading to theories in which magnetic fluctuations are either responsible for or strongly coupled to the superconducting order parameter. In the cuprates, theories of magnetic pairing have been invoked to explain the observation of a resonant magnetic excitation that scales in energy with the superconducting energy gap and is suppressed above the superconducting transition temperature, Tc. Such resonant excitations have been shown by inelastic neutron scattering to be a universal feature of the cuprate superconductors, and have even been observed in heavy fermion superconductors with much lower transition temperatures. In this paper, we show neutron scattering evidence of a resonant excitation in Ba0.6K0.4Fe2As2, which is a superconductor below 38K, at the momentum transfer associated with magnetic order in the undoped compound, BaFe2As2, and at an energy transfer that is consistent with scaling in other strongly correlated electron superconductors. As in the cuprates, the peak disappears at Tc providing the first experimental confirmation of a strong coupling of the magnetic fluctuation spectrum to the superconducting order parameter in the new iron arsenide superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا