No Arabic abstract
To test whether the short GRB rates, redshift distribution and host galaxies are consistent with current theoretical predictions, we use avery large database of population synthesis calculations to examine BH-NS and NS-NS merger rates in the universe, factoring in (i) the star formation history of the universe, (ii) a heterogeneous population of star-forming galaxies, including spirals and ellipticals, and (iii) a simple flux-limited selection model for short GRB detection. When we require our models reproduce the known short GRB rates and redshift measurements (and, for NS-NS, the merger rates extrapolated from binary pulsars in the Galaxy), a small fraction of models reproduce all observations, both when we assume a NS-NS and a BH-NS origin for bursts. Most commonly models produce mergers preferentially in spiral galaxies if short GRBs arise from NS-NS mergers alone. Model universes where present-day binary mergers occur preferentially in elliptical galaxies necessarily include a significant fraction of binaries with long delay times between birth and merger (often $O(10{rm Gyr})$). Though long delays occur, almost all of our models predict that a higher proportion of short GRBs should occur at moderate to high redshift (e.g., $z>1$) than has presently been observed, in agreement with recent observations which suggest a selection bias towards successful follow-up of low-redshift short GRBs. Finally, if only a fraction of BH-NS mergers have the right combination of masses and spins to make GRBs, then at best only a small fraction of BH-NS models could be consistent with all {em current} available data. (Abridged)
The first locations of short gamma-ray bursts (GRBs) in elliptical galaxies suggest they are produced by the mergers of double neutron star (DNS) binaries in old stellar populations. Globular clusters, where the extreme densities of very old stars in cluster cores create and exchange compact binaries efficiently, are a natural environment to produce merging NSs. They also allow some short GRBs to be offset from their host galaxies, as opposed to DNS systems formed from massive binary stars which appear to remain in galactic disks. Starting with a simple scaling from the first DNS observed in a galactic globular, which will produce a short GRB in ~300My, we present numerical simulations which show that ~10-30% of short GRBs may be produced in globular clusters vs. the much more numerous DNS mergers and short GRBs predicted for galactic disks. Reconciling the rates suggests the disk short GRBs are more beamed, perhaps by both the increased merger angular momentum from the DNS spin-orbit alignment (random for the DNS systems in globulars) and a larger magnetic field on the secondary NS.
The rapid succession of discovery of short--duration hard--spectrum GRBs has led to unprecedented insights into the energetics of the explosion and nature of the progenitors. Yet short of the detection of a smoking gun, like a burst of coincident gravitational radiation or a Li-Paczynski mini-supernova, it is unlikely that a definitive claim can be made for the progenitors. As was the case with long--duration soft--spectrum GRBs, however, the expectation is that a systematic study of the hosts and the locations of short GRBs could begin to yield fundamental clues about their nature. We present the first aggregate study of the host galaxies of short--duration hard--spectrum GRBs. In particular, we present the Gemini--North and Keck discovery spectra of the galaxies that hosted three short GRBs and a moderate--resolution (R~6000) spectrum of a fourth host. We find that these short--hard GRBs originate in a variety of low-redshift (z<1) environments that differ substantially from those of long--soft GRBs, both on individual galaxy scales and on galaxy--cluster scales. Specifically, three of the bursts are found to be associated with old and massive galaxies with no current (< 0.1 Msol/hr) or recent star formation. Two of these galaxies are located within a cluster environment. These observations support an origin from the merger of compact stellar remnants, such as double neutron stars of a neutron star--black hole binary. The fourth event, in contrast, occurred within a dwarf galaxy with a star formation rate exceeding 0.5 Msol/yr. Therefore, it appears that like supernovae of Type Ia, the progenitors of short--hard bursts are created in all galaxy types, suggesting a corresponding class with a wide distribution of delay times between formation and explosion.
We present K-band imaging observations of ten Gamma-Ray Burst (GRB) host galaxies. We compare their observed and absolute K magnitudes as well as their R-K colours with those of other distant sources detected in various optical, near-infrared, mid-infrared and submillimeter deep surveys. We find that the GRB host galaxies, most of them lying at 0.5<z<1.5, exhibit very blue colours, comparable to those of the faint blue star-forming sources at high redshift. They are sub-luminous in the K-band, suggesting a low stellar mass content. We do not find any GRB hosts harbouring R- and K-band properties similar to those characterizing the luminous infrared/submillimeter sources and the extremely red starbursts. Should GRBs be regarded as an unbiased probe of star-forming activity, this lack of luminous and/or reddened objects among the GRB host sample might reveal that the detection of GRB optical afterglows is likely biased toward unobscured galaxies. It would moreover support the idea that a large fraction of the optically-dark GRBs occur within dust-enshrouded regions of star formation. On the other hand, our result might also simply reflect intrinsic properties of GRB host galaxies experiencing a first episode of very massive star formation and characterized by a rather weak underlying stellar population. Finally, we compute the absolute B magnitudes for the whole sample of GRB host galaxies with known redshifts and detected at optical wavelengths. We find that the latter appear statistically even less luminous than the sub-luminous blue sources which mostly contributed to the B-band light emitted at high redshift. This indicates that the formation of GRBs could be favoured in particular systems with very low luminosities and, therefore, low metallicities. (Abridged)
Motivated by the recent observational and theoretical evidence that long Gamma-Ray Bursts (GRBs) are likely associated with low metallicity, rapidly rotating massive stars, we examine the cosmological star formation rate (SFR) below a critical metallicity Z_crit Z_sun/10 - Z_sun/5, to estimate the event rate of high-redshift long GRB progenitors. To this purpose, we exploit a galaxy formation scenario already successfully tested on a wealth of observational data on (proto)spheroids, Lyman break galaxies, Lyman alpha emitters, submm galaxies, quasars, and local early-type galaxies. We find that the predicted rate of long GRBs amounts to about 300 events/yr/sr, of which about 30 per cent occur at z>~6. Correspondingly, the GRB number counts well agree with the bright SWIFT data, without the need for an intrinsic luminosity evolution. Moreover, the above framework enables us to predict properties of the GRB host galaxies. Most GRBs are associated with low mass galaxy halos M_H<~10^11 M_sun, and effectively trace the formation of small galaxies in such halos. The hosts are young, with age smaller than 5*10^7 yr, gas rich, but poorly extincted (A_V<~0.1) because of their chemical immaturity; this also implies high specific SFR and quite extreme alpha-enhancement. Only the minority of hosts residing in large halos with M_H>~10^12 M_sun have larger extinction (A_V~0.7-1), SFRs exceeding 100 M_sun/yr and can be detected at submm wavelengths. Most of the hosts have UV magnitudes in the range -20 <~M_1350<~ -16, and Lyman alpha luminosity in the range 2*10^40 <~L_Lya<~2*10^42 erg/s. GRB hosts are thus tracing the faint end of the luminosity function of Lyman break galaxies and Lyman alpha emitters.
We investigate the possible origin of extended emissions (EEs) of short gamma-ray bursts with an isotropic energy of ~ 10^(50-51) erg and a duration of a few 10 s to ~ 100 s, based on a compact binary (neutron star (NS)-NS or NS-black hole (BH)) merger scenario. We analyze the evolution of magnetized neutrino-dominated accretion disks of mass ~ 0.1 M_sun around BHs formed after the mergers, and estimate the power of relativistic outflows via the Blandford-Znajek (BZ) process. We show that a rotation energy of the BH up to > 10^52 erg can be extracted with an observed time scale of > 30 (1+z) s with a relatively small disk viscosity parameter of alpha < 0.01. Such a BZ power dissipates by clashing with non-relativistic pre-ejected matter of mass M ~ 10^-(2-4) M_sun, and forms a mildly relativistic fireball. We show that the dissipative photospheric emissions from such fireballs are likely in the soft X-ray band (1-10 keV) for M ~ 10^-2 M_sun possibly in NS-NS mergers, and in the BAT band (15-150 keV) for M ~ 10^-4 M_sun possibly in NS-BH mergers. In the former case, such soft EEs can provide a good chance of ~ 6 yr^-1 for simultaneous detections of the gravitational waves with a ~ 0.1 deg angular resolution by soft X-ray survey facilities like Wide-Field MAXI.