Electron Spin Dynamics of the Superconductor CaC6 probed by ESR


Abstract in English

Conduction Electron Spin Resonance (CESR) was measured on a thick slab of CaC6 in the normal and superconducting state. A surprising increase of the CESR intensity below Tc can not be explained by the theoretically predicted change in spin susceptibility. It is interpreted as a vortex enhanced increase of the effective skin depth. Non-linear microwave absorption measurements in the superconducting state describe CaC6 as an anisotropic BCS superconductor. The study of the spin dynamics in the superconducting state and the discovery of the vortex enhanced increase of the skin depth poses a challenge to theory to provide a comprehensive description of the observed phenomena. CESR data in the normal state characterize CaC6 as a three-dimensional (3D) metal. The analysis suggests that the scattering of conduction electrons is dominated by impurities and supports the description of superconductivity in the dirty limit.

Download