No Arabic abstract
We present recent results on a systematic method to calculate transport coefficients for a meson gas (in particular, we analyze a pion gas) at low temperatures in the context of Chiral Perturbation Theory. Our method is based on the study of Feynman diagrams with a power counting which takes into account collisions in the plasma by means of a non-zero particle width. In this way, we obtain results compatible with analysis of Kinetic Theory with just the leading order diagram. We show the behavior with temperature of electrical and thermal conductivities and shear and bulk viscosities, and we discuss the fundamental role played by unitarity. We obtain that bulk viscosity is negligible against shear viscosity near the chiral phase transition. Relations between the different transport coefficients and bounds on them based on different theoretical approximations are also discussed. We also comment on some applications to heavy-ion collisions.
Properties of $rho$-meson in symmetric nuclear matter are investigated in a light-front constituent quark model (LFCQM), using the in-medium inputs calculated by the quark-meson coupling (QMC) model. The LFCQM used in this study was already applied for the studies of the electromagnetic properties of $rho$-meson in vacuum, namely, the charge~$G_0$, magnetic~$G_1$, and quadrupole~$G_2$ form factors, electromagnetic charge radius, and electromagnetic decay constant. We predict that the electromagnetic decay constant, charge radius, and quadrupole moment are enhanced as increasing the nuclear matter density, while the magnetic moment is slightly quenched. Furthermore, we predict that the value $Q^2_{rm zero}$, which crosses zero of the charge form factor, $G_0(Q^2_{rm zero})=0$ ($Q^2 = -q^2 > 0$ with $q$ being the four-momentum transfer), decreases as increasing the nuclear matter density.
Properties of r{ho}-meson in symmetric nuclear matter are investigated within a light-front constituent quark model (LFCQM), using the in-medium input calculated by the quark-meson coupling (QMC) model. The LFCQM used here was previously applied in vacuum to calculate the r{ho}-meson electromagnetic properties, namely, charge G 0 , magnetic G 1 , and quadrupole G 2 form factors, as well as the electromagnetic radius and decay constant. We predict the in-medium modifications of the r{ho}-meson electromagnetic form factors in symmetric nuclear matter.
We compute the transport coefficients, namely, the coefficients of shear and bulk viscosities as well as thermal conductivity for hot and dense matter. The calculations are performed within the Polyakov quark meson model. The estimation of the transport coefficients is made using the Boltzmann kinetic equation within the relaxation time approximation. The energy dependent relaxation time is estimated from meson meson scattering, quark meson scattering and quark quark scattering within the model. In our calculations, the shear viscosity to entropy ratio and the coefficient of thermal conductivity show a minimum at the critical temperature, while the ratio of bulk viscosity to entropy density exhibits a peak at this transition point.The effect of confinement modelled through a Polyakov loop potential plays an important role in the estimation of these dissipative coefficients both below and above the critical temperature.
Recent studies of properties and decays of the $B_c^+$ meson by the LHC experiments are presented. Mass and lifetime measurements are discussed and some of the many new observed decays are reported.
We calculate the complete form of the dimension-8 condensate contributions in the two-point correlator of the ($1^{-+}$,$0^{++}$) light hybrid current considering the operator mixing under renormalization. We find the inclusion these higher power corrections as well as the update of $langle g^3G^3rangle$ increase the QCD sum rule mass prediction for the $1^{-+}$ light hybrid. The obtained conservative mass range 1.72--2.60 GeV does not favor the $pi_1(1400)$ and the $pi_1(1600)$ to be pure hybrid states and suggests the $pi_1(2015)$ observed by E852 is more likely to have much of a hybrid constituent. We also study the $b_1pi$ and $rhopi$ decay patterns of the $1^{-+}$ light hybrid with light-cone QCD sum rules. We obtain a relatively large partial decay width of the $b_1pi$ mode, which is consistent with the predictions from the flux tube models and lattice QCD. More interestingly, using the tensor interpolating current we find the partial decay width of the $rhopi$ mode is small due to the absence of the leading twist contribution in the light-cone expansion of the correlation function.