Do you want to publish a course? Click here

Radiation- and Phonon-Bottleneck-Induced Tunneling in the Fe8 Single-Molecule Magnet

407   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measure magnetization changes in a single crystal of the single-molecule magnet Fe8 when exposed to intense, short (<20 $mu$s) pulses of microwave radiation resonant with the m = 10 to 9 transition. We find that radiation induces a phonon bottleneck in the system with a time scale of ~5 $mu$s. The phonon bottleneck, in turn, drives the spin dynamics, allowing observation of thermally assisted resonant tunneling between spin states at the 100-ns time scale. Detailed numerical simulations quantitatively reproduce the data and yield a spin-phonon relaxation time of T1 ~ 40 ns.



rate research

Read More

The low temperature spin dynamics of a Fe8 Single-Molecule Magnet was studied under circularly polarized electromagnetic radiation allowing us to establish clearly photon-assisted tunneling. This effect, while linear at low power, becomes highly non-linear above a relatively low power threshold. This non-linearity is attributed to the nature of the coupling of the sample to the thermostat.These results are of great importance if such systems are to be used as quantum computers.
We theoretically investigate quantum transport through single-molecule magnet (SMM) junctions with ferromagnetic and normal-metal leads in the sequential regime. The current obtained by means of the rate-equation gives rise to the tunneling anisotropic magnetoresistance (TAMR), which varies with the angle between the magnetization direction of ferromagnetic lead and the easy axis of SMM. The angular dependence of TAMR can serve as a probe to determine experimentally the easy axis of SMM. Moreover, it is demonstrated that both the magnitude and sign of TAMR are tunable by the bias voltage, suggesting a promising TAMR based spintronic molecule-device.
142 - S. Bahr , K. Petukhov , V. Mosser 2007
We present magnetization measurements on the single molecule magnet Fe8 in the presence of pulsed microwave radiation. A pump-probe technique is used with two microwave pulses with frequencies of 107 GHz and 118 GHz and pulse lengths of several nanoseconds to study the spin dynamics via time-resolved magnetization measurements using a Hall probe magnetometer. We find evidence for short spin-phonon relaxation times of the order of one microsecond. The temperature dependence of the spin-phonon relaxation time in our experiments is in good agreement with previously published theoretical results. We also established the presence of very short energy diffusion times, that act on a timescale of about 70 ns.
We show that the nuclear spin dynamics in the single-molecule magnet Mn12-ac below 1 K is governed by quantum tunneling fluctuations of the cluster spins, combined with intercluster nuclear spin diffusion. We also obtain the first experimental proof that - surprisingly - even deep in the quantum regime the nuclear spins remain in good thermal contact with the lattice phonons. We propose a simple model for how T-independent tunneling fluctuations can relax the nuclear polarization to the lattice, that may serve as a framework for more sophisticated theories.
W-band ({ u} ca. 94 GHz) electron paramagnetic resonance (EPR) spectroscopy was used for a single-crystal study of a star-shaped Fe3Cr single-molecule magnet (SMM) with crystallographically imposed trigonal symmetry. The high resolution and sensitivity accessible with W-band EPR allowed us to determine accurately the axial zero-field splitting terms for the ground (S =6) and first two excited states (S =5 and S =4). Furthermore, spectra recorded by applying the magnetic field perpendicular to the trigonal axis showed a pi/6 angular modulation. This behavior is a signature of the presence of trigonal transverse magnetic anisotropy terms whose values had not been spectroscopically determined in any SMM prior to this work. Such in-plane anisotropy could only be justified by dropping the so-called giant spin approach and by considering a complete multispin approach. From a detailed analysis of experimental data with the two models, it emerged that the observed trigonal anisotropy directly reflects the structural features of the cluster, i.e., the relative orientation of single-ion anisotropy tensors and the angular modulation of single-ion anisotropy components in the hard plane of the cluster. Finally, since high-order transverse anisotropy is pivotal in determining the spin dynamics in the quantum tunneling regime, we have compared the angular dependence of the tunnel splitting predicted by the two models upon application of a transverse field (Berry-phase interference).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا