Do you want to publish a course? Click here

Interstellar Dust in the Solar System

120   0   0.0 ( 0 )
 Added by Harald Krueger
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Ulysses spacecraft has been orbiting the Sun on a highly inclined ellipse almost perpendicular to the ecliptic plane (inclination 79 deg, perihelion distance 1.3 AU, aphelion distance 5.4 AU) since it encountered Jupiter in 1992. The in-situ dust detector on board continuously measured interstellar dust grains with masses up to 10^-13 kg, penetrating deep into the solar system. The flow direction is close to the mean apex of the Suns motion through the solar system and the grains act as tracers of the physical conditions in the local interstellar cloud (LIC). While Ulysses monitored the interstellar dust stream at high ecliptic latitudes between 3 and 5 AU, interstellar impactors were also measured with the in-situ dust detectors on board Cassini, Galileo and Helios, covering a heliocentric distance range between 0.3 and 3 AU in the ecliptic plane. The interstellar dust stream in the inner solar system is altered by the solar radiation pressure force, gravitational focussing and interaction of charged grains with the time varying interplanetary magnetic field. We review the results from in-situ interstellar dust measurements in the solar system and present Ulysses latest interstellar dust data. These data indicate a 30 deg shift in the impact direction of interstellar grains w.r.t. the interstellar helium flow direction, the reason of which is presently unknown.



rate research

Read More

In the early 1990s, contemporary interstellar dust penetrating deep into the heliosphere was identified with the in-situ dust detector on board the Ulysses spacecraft. Later on, interstellar dust was also identified in the data sets measured with dust instruments on board Galileo, Cassini and Helios. Ulysses monitored the interstellar dust stream at high ecliptic latitudes for about 16 years. The three other spacecraft data sets were obtained in the ecliptic plane and cover much shorter time intervals.We compare in-situ interstellar dust measurements obtained with these four spacecrafts, published in the literature, with predictions of a state-of-the-art model for the dynamics of interstellar dust in the inner solar system (Interplanetary Meteoroid environment for EXploration, IMEX), in order to test the reliability of the model predictions. Micrometer and sub-micrometer sized dust particles are subject to solar gravity and radiation pressure as well as to the Lorentz force on a charged dust particle moving through the Interplanetary Magnetic Field. The IMEX model was calibrated with the Ulysses interstellar dust measurements and includes these relevant forces. We study the time-resolved flux and mass distribution of interstellar dust in the solar system. The IMEX model agrees with the spacecraft measurements within a factor of 2 to 3, also for time intervals and spatial regions not covered by the original model calibration with the Ulysses data set. It usually underestimates the dust fluxes measured by the space missions which were not used for the model calibration, i.e. Galileo, Cassini and Helios. IMEX is a unique time-dependent model for the prediction of interstellar dust fluxes and mass distributions for the inner and outer solar system. The model is suited to study dust detection conditions for past and future space missions.
The in-situ detection of interstellar dust grains in the Solar System by the dust instruments on-board the Ulysses and Galileo spacecraft as well as the recent measurements of hyperbolic radar meteors give information on the properties of the interstellar solid particle population in the solar vicinity. Especially the distribution of grain masses is indicative of growth and destruction mechanisms that govern the grain evolution in the interstellar medium. The mass of an impacting dust grain is derived from its impact velocity and the amount of plasma generated by the impact. Because the initial velocity and the dynamics of interstellar particles in the Solar System are well known, we use an approximated theoretical instead of the measured impact velocity to derive the mass of interstellar grains from the Ulysses and Galileo in-situ data. The revised mass distributions are steeper and thus contain less large grains than the ones that use measured impact velocities, but large grains still contribute significantly to the overall mass of the detected grains. The flux of interstellar grains with masses $> 10^{-14} {rm kg}$ is determined to be $1cdot 10^{-6} {rm m}^{-2} {rm s}^{-1}$. The comparison of radar data with the extrapolation of the Ulysses and Galileo mass distribution indicates that the very large ($m > 10^{-10} {rm kg}$) hyperbolic meteoroids detected by the radar are not kinematically related to the interstellar dust population detected by the spacecraft.
Dust measurements in the outer solar system are reviewed. Only the plasma wave instrument on board Voyagers 1 and 2 recorded impacts in the Edgeworth-Kuiper belt (EKB). Pioneers 10 and 11 measured a constant dust flux of 10-micron-sized particles out to 20 AU. Dust detectors on board Ulysses and Galileo uniquely identified micron-sized interstellar grains passing through the planetary system. Impacts of interstellar dust grains onto big EKB objects generate at least about a ton per second of micron-sized secondaries that are dispersed by Poynting-Robertson effect and Lorentz force. We conclude that impacts of interstellar particles are also responsible for the loss of dust grains at the inner edge of the EKB. While new dust measurements in the EKB are in an early planning stage, several missions (Cassini and STARDUST) are en route to analyze interstellar dust in much more detail.
In the early 1990s, contemporary interstellar dust (ISD) penetrating deep into the heliosphere was identified with the in-situ dust detector on board the Ulysses spacecraft. Between 1992 and the end of 2007 Ulysses monitored the ISD stream. The interstellar grains act as tracers of the physical conditions in the local interstellar medium surrounding our solar system. Earlier analyses of the Ulysses ISD data measured between 1992 and 1998 implied the existence of big ISD grains [up to 10^-13kg]. The derived gas-to-dust-mass ratio was smaller than the one derived from astronomical observations, implying a concentration of ISD in the very local interstellar medium. We analyse the entire data set from 16 yr of Ulysses ISD measurements in interplanetary space. This paper concentrates on the overall mass distribution of ISD. An accompanying paper investigates time-variable phenomena in the Ulysses ISD data, and in a third paper we present the results from dynamical modelling of the ISD flow applied to Ulysses. We use the latest values for the interstellar hydrogen and helium densities, the interstellar helium flow speed of v_ISM,inf=23.2km/s, and the ratio of radiation pressure to gravity, beta, calculated for astronomical silicates. We find a gas-to-dust-mass ratio in the local interstellar cloud of R_g/d=193^+85_-57, and a dust density of 2.1+/-0.6x10^-24kg/m^3. For a higher inflow speed of 26km/s, the gas-to-dust-mass ratio is 20% higher, and, accordingly, the dust density is lower by the same amount. The gas-to-dust mass ratio derived from our new analysis is compatible with the value most recently determined from astronomical observations. We confirm earlier results that the very local interstellar medium contains big (i.e. 1 um-sized) ISD grains. We find a dust density in the local interstellar medium that is a factor of three lower than values implied by earlier analyses.
In two recent papers published in MNRAS, Namouni and Morais (2018, 2020) claimed evidence for the interstellar origin of some small Solar System bodies, including i) objects in retrograde co-orbital motion with the giant planets, and ii) the highly-inclined Centaurs. Here, we discuss the flaws of those papers that invalidate the authors conclusions. Numerical simulations backwards in time are not representative of the past evolution of real bodies. Instead, these simulations are only useful as a means to quantify the short dynamical lifetime of the considered bodies and the fast decay of their population. In light of this fast decay, if the observed bodies were the survivors of populations of objects captured from interstellar space in the early Solar System, these populations should have been implausibly large (e.g. about 10 times the current main asteroid belt population for the retrograde coorbital of Jupiter). More likely, the observed objects are just transient members of a population that is maintained in quasi-steady state by a continuous flux of objects from some parent reservoir in the distant Solar System. We identify in the Halley type comets and the Oort cloud the most likely sources of retrograde coorbitals and highly-inclined Centaurs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا