No Arabic abstract
In this paper we discuss solid-state nanoelectronic realizations of Josephson flux qubits with large tunneling amplitude between the two macroscopic states. The latter can be controlled via the height and wells form of the potential barrier, which is determined by quantum-state engineering of the flux qubit circuit. The simplest circuit of the flux qubit is a superconducting loop interrupted by a Josephson nanoscale tunnel junction. The tunneling amplitude between two macroscopically different states can be essentially increased, by engineering of the qubit circuit, if tunnel junction is replaced by a ScS contact. However, only Josephson tunnel junctions are particularly suitable for large-scale integration circuits and quantum detectors with preset-day technology. To overcome this difficulty we consider here the flux qubit with high-level energy separation between ground and excited states, which consists of a superconducting loop with two low-capacitance Josephson tunnel junctions in series. We demonstrate that for real parameters of resonant superposition between the two macroscopic states the tunneling amplitude can reach values greater than 1K. Analytical results for the tunneling amplitude obtained within semiclassical approximation by instanton technique show good correlation with a numerical solution.
We have observed signatures of resonant tunneling in an Al three-junction qubit, inductively coupled to a Nb LC tank circuit. The resonant properties of the tank oscillator are sensitive to the effective susceptibility (or inductance) of the qubit, which changes drastically as its flux states pass through degeneracy. The tunneling amplitude is estimated from the data. We find good agreement with the theoretical predictions in the regime of their validity.
We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz, and integrate these components to implement both a monolithic amplitude/phase vector modulator and a quadrature mixer. The devices are actuated by flux signals, dissipate no power on chip, exhibit input saturation powers in excess of 1 nW, and provide cryogenic microwave modulation solutions for integrated control of superconducting qubits.
A superconducting quantum interference device (SQUID) comprising 0- and $pi$-Josephson junctions (JJs), called $pi$-SQUID, is studied by the resistively shunted junction model. The $pi$-SQUID shows half-integer Shapiro-steps (SS) under microwave irradiation at the voltage $V$ = $(hbar/2e)Omega (n/2)$, with angular frequency $Omega$ and half-integer $n$/2 in addition to integer $n$. We show that the $pi$-SQUID can be a $pi$-qubit with spontaneous loop currents by which the half-integer SS are induced. Making the 0- and $pi$-JJs equivalent is a key for the half-integer SS and realizing the $pi$-qubit.
We have carried out systematic Macroscopic Quantum Tunneling (MQT) experiments on Nb/Al-AlO_x/Nb Josephson junctions (JJs) of different areas. Employing on-chip lumped element inductors, we have decoupled the JJs from their environmental line impedances at the frequencies relevant for MQT. This allowed us to study the crossover from the thermal to the quantum regime in the low damping limit. A clear reduction of the crossover temperature with increasing JJ size is observed and found to be in excellent agreement with theory. All junctions were realized on the same chip and were thoroughly characterized before the quantum measurements.
We report single-shot readout of a superconducting flux qubit by using a flux-driven Josephson parametric amplifier (JPA). After optimizing the readout power, gain of the JPA and timing of the data acquisition, we observe the Rabi oscillations with a contrast of 74% which is mainly limited by the bandwidth of the JPA and the energy relaxation of the qubit. The observation of quantum jumps between the qubit eigenstates under continuous monitoring indicates the nondestructiveness of the readout scheme.