No Arabic abstract
We present the result of a wide-field survey of globular clusters (GCs) in M31 covering a 3deg x 3deg field c. We have searched for GCs on CCD images taken with Washington CMT1 filters at the KPNO 0.9 m telescope using steps: (1) inspection of morphological parameters given by the SExtractor package such as stellarity, full maximum, and ellipticity; (2) consulting the spectral types and radial velocities obtained from spectra takena spectrograph at the WIYN 3.5 m telescope; and (3) visual inspection of the images of each object. We have and GC candidates, of which 605 are newly found GCs and GC candidates and 559 are previously known GCs. Amoects there are 113 genuine GCs, 258 probable GCs, and 234 possible GCs, according to our classification critee known objects there are 383 genuine GCs, 109 probable GCs, and 67 possible GCs. In total there are 496 genprobable GCs and 301 possible GCs. Most of these newly found GCs have T1 magnitudes of 17.5 - 19.5 mag, [17.9 < V < 19.9 mag assuming (C-T1) ~ 1.5], and (C-T1) colors in the range 1 - 2.
We present a kinematic analysis of the globular cluster(GC) system in M31. Using the photometric and spectroscopic database of 504 GCs, we have investigated the kinematics of the M31 GC system. We find that the all GC system shows strong rotation, with rotation amplitude of v_rot~190km/s, and that a weak rotation persists even for the outermost samples at |Y|>5kpc. The rotation-corrected velocity dispersion for the GC system is estimated to be sigma_{p,r}~130km/s, and it increases from sigma_{p,r}~120km/s at |Y|<1kpc to sigma_{p,r}~150km/s at |Y|>5kpc. These results are very similar to those for the metal-poor GCs. This shows that there is a dynamically hot halo in M31 that is rotating but primarily pressure-supported. We have identified 50 friendless GCs, and they appear to rotate around the major axis of M31. For the subsamples of metal-poor and metal-rich GCs, we have found that the metal-rich GCs are more centrally concentrated than the metal-poor GCs, and both subsamples show strong rotation. For the subsamples of bright and faint GCs, it is found that the rotation for the faint GCs is stronger than that for the bright GCs. We have identified 56 GCs and GC candidates with X-ray detection. It is found that the majority of X-ray emitting GCs follow the disk rotation, and that the redder, more metal-rich, and brighter GCs are more likely to be detected as X-ray emitting GCs. We have derived a rotation curve of M31 using the GCs at |Y|<0.6kpc. We have estimated the dynamical mass of M31 using `Projected Mass Estimator(PME) and `Tracer Mass Estimator(TME). We finally discuss the implication of these results and compare the kinematics of GCs with that of planetary nebulae in M31.
We present wide-field spectroscopy of globular clusters around the Leo I group galaxies NGC 3379 and NGC 3384 using the FLAMES multi-fibre instrument at the VLT. We obtain accurate radial velocities for 42 globular clusters (GCs) in total, 30 for GCs around the elliptical NGC 3379, eight around the lenticular NGC 3384, and four which may be associated with either galaxy. These data are notable for their large radial range extending from 07 to 145 (2 to 42 kpc) from the centre of NGC 3379, and small velocity uncertainties of about 10 km/s. We combine our sample of 30 radial velocities for globular clusters around NGC 3379 with 8 additional GC velocities from the literature, and find a projected velocity dispersion of 175(+24/-22) km/s at R < 5 and 147(+44/-39) at R > 5. These velocity dispersions are consistent with a dark matter halo around NGC 3379 with a concentration in the range expected from a LCDM cosmological model and a total mass of ~ 6 x 10^11 Msun. Such a model is also consistent with the stellar velocity dispersion at small radii and the rotation of the HI ring at large radii, and has a M/L_B that increases by a factor of five from several kpc to 100 kpc. Our velocity dispersion for the globular cluster system of NGC 3379 is somewhat higher than that found for the planetary nebulae (PNe) in the inner region covered by the PN data, and we discuss possible reasons for this difference. For NGC 3384, we find the GC system has a rotation signature broadly similar to that seen in other kinematic probes of this SB0 galaxy. This suggests that significant rotation may not be unusual in the GC systems of disc galaxies.
The large-scale distribution of globular clusters in the central region of the Coma cluster of galaxies is derived through the analysis of Hubble Space Telescope/Advanced Camera for Surveys data. Data from three different HST observing programs are combined in order to obtain a full surface density map of globular clusters in the core of Coma. A total of 22,426 Globular cluster candidates were selected through a detailed morphological inspection and the analysis of their magnitude and colors in two wavebands, F475W (Sloan g) and F814W (I). The spatial distribution of globular clusters defines three main overdensities in Coma that can be associated with NGC 4889, NGC 4874, and IC 4051 but have spatial scales five to six times larger than individual galaxies. The highest surface density of globular clusters in Coma is spatially coincidental with NGC 4889. The most extended overdensity of globular clusters is associated with NGC 4874. Intracluster globular clusters also form clear bridges between Coma galaxies. Red globular clusters, which agglomerate around the center of the three main subgroups, reach higher surface densities than blue ones.
We report the discovery of 40 new globular clusters (GCs) that have been found in surveys of the halo of M31 based on INT/WFC and CHFT/Megacam imagery. A subset of these these new GCs are of an extended, diffuse nature, and include those already found in Huxor et al. (2005). The search strategy is described and basic positional and V and I photometric data are presented for each cluster. For a subset of these clusters, K-band photometry is also given. The new clusters continue to be found to the limit of the survey area (~100 kpc), revealing that the GC system of M31 is much more extended than previously realised. The new clusters increase the total number of confirmed GCs in M31 by approximately 10% and the number of confirmed GCs beyond 1 degree (~14 kpc) by more than 75%. We have also used the survey imagery as well recent HST archival data to update the Revised Bologna Catalogue (RBC) of M31 globular clusters.
We present ultraviolet (UV) photometry of M31 globular clusters (GCs) found in 23 Galaxy Evolution Explorer (GALEX) images covering the entirety of M31. We detect 485 and 273 GCs (and GC candidates) in the near-ultraviolet (NUV; 2267 A) and far-ultraviolet (FUV; 1516 A), respectively. Comparing M31 data with those of Galactic GCs in the UV with the aid of population models, we find that the age ranges of old GCs in M31 and the Galactic halo are similar. Three metal-rich ([Fe/H]>-1) GCs in M31 produce significant FUV flux making their FUV-V colors unusually blue for their metallicities. These are thought to be analogs of the two peculiar Galactic GCs NGC 6388 and NGC 6441 with extended blue HB stars. Based on the models incorporating helium enriched subpopulations in addition to the majority of the population that have a normal helium abundance, we suggest that even small fraction of super-helium-rich subpopulations in GCs can reproduce the observed UV bright metal-rich GCs. Young clusters in M31 show distinct UV and optical properties from GCs in Milky Way. Population models indicate that their typical age is less than ~ 2 Gyrs. A large fraction of young GCs have the kinematics of the thin, rapidly rotating disk component. However, a subset of the old GCs also shares the thin-disk kinematics of the younger clusters. The existence of young GCs on the outskirts of M31 disk suggests the occurrence of a significant recent star formation in the thin-disk of M31. Old thin-disk GCs may set constraints on the epoch of early formation of the M31 thin-disk. We detect 12 (10) intermediate-age GC candidates in NUV (FUV). We suggest that some of spectroscopically identified intermediate-age GCs may not be truly intermediate in age, but rather older GCs that possess developed HB.