No Arabic abstract
We study the survival of super-currents in a system of impenetrable bosons subject to a quantum quench from its critical superfluid phase to an insulating phase. We show that the evolution of the current when the quench follows a Rosen-Zener profile is exactly solvable. This allows us to analyze a quench of arbitrary rate, from a sudden destruction of the superfluid to a slow opening of a gap. The decay and oscillations of the current are analytically derived, and studied numerically along with the momentum distribution after the quench. In the case of small supercurrent boosts $ u$, we find that the current surviving at long times is proportional to $ u^3$.
We study the survival of the current induced initially by applying a twist at the boundary of a chain of hard-core bosons (HCBs), subject to a periodic double $delta$-function kicks in the staggered on-site potential. We study the current flow and the work-done on the system at the long-time limit as a function of the driving frequency. Like a recent observation in the HCB chain with single $delta$-function kick in the staggered on-site potential, here we also observe many dips in the current flow and concurrently many peaks in the work-done on the system at some specific values of the driving frequency. However, unlike the single kicked case, here we do not observe a complete disappearance of the current in the limit of a high driving frequency, which shows the absence of any dynamical localization in the double $delta$-functions kicked HCB chain. Our analytical estimations of the saturated current and the saturated work-done, defined at the limit of a large time together with a high driving frequency, match very well with the exact numerics. In the case of the very small initial current, induced by a very small twist $ u$, we observe that the saturated current is proportional to $ u$. Finally, we study the time-evolution of the half-filled HCB chain where the particles are localized in the central part of the chain. We observe that the particles spread linearly in a light-cone like region at the rate determined by the maximum value of the group velocity. Except for a very trivial case, the maximum group velocity never vanishes, and therefore we do not observe any dynamical localization in the system.
The low-lying eigenstates of a one-dimensional (1D) system of many impenetrable point bosons and one moving impurity particle with repulsive zero-range impurity-boson interaction are found for all values of the impurity-boson mass ratio and coupling constant. The moving entity is a polaron-like composite object consisting of the impurity clothed by a co-moving gray soliton. The special case with impurity-boson interaction of point hard-core form and impurity-boson mass ratio $m_i/m$ unity is first solved exactly as a special case of a previous Fermi-Bose (FB) mapping treatment of soluble 1D Bose-Fermi mixture problems. Then a more general treatment is given using second quantization for the bosons and the second-quantized form of the FB mapping, eliminating the impurity degrees of freedom by a Lee-Low-Pines canonical transformation. This yields the exact solution for arbitrary $m_i/m$ and impurity-boson interaction strength.
We report time-resolved measurements of Landau-Zener tunneling of Bose-Einstein condensates in accelerated optical lattices, clearly resolving the step-like time dependence of the band populations. Using different experimental protocols we were able to measure the tunneling probability both in the adiabatic and in the diabatic bases of the system. We also experimentally determine the contribution of the momentum width of the Bose condensates to the width of the tunneling steps and discuss the implications for measuring the jump time in the Landau-Zener problem.
We propose a feasible scheme to realize nonlinear Ramsey interferometry with a two-component Bose-Einstein condensate, where the nonlinearity arises from the interaction between coherent atoms. In our scheme, two Rosen-Zener pulses are separated by an intermediate holding period of variable duration and through varying the holding period we have observed nice Ramsey interference patterns in time domain. In contrast to the standard Ramsey fringes our nonlinear Ramsey patterns display diversiform structures ascribed to the interplay of the nonlinearity and asymmetry. In particular, we find that the frequency of the nonlinear Ramsey fringes exactly reflects the strength of nonlinearity as well as the asymmetry of system. Our finding suggests a potential application of the nonlinear Ramsey interferometry in calibrating the atomic parameters such as scattering length and energy spectrum.
Magneto-transport of hard core bosons (HCB) is studied using an XXZ quantum spin model representation, appropriately gauged on the torus to allow for an external magnetic field. We find strong lattice effects near half filling. An effective quantum mechanical description of the vortex degrees of freedom is derived. Using semiclassical and numerical analysis we compute the vortex hopping energy, which at half filling is close to magnitude of the boson hopping energy. The critical quantum melting density of the vortex lattice is estimated at 6.5x10-5 vortices per unit cell. The Hall conductance is computed from the Chern numbers of the low energy eigenstates. At zero temperature, it reverses sign abruptly at half filling. At precisely half filling, all eigenstates are doubly degenerate for any odd number of flux quanta. We prove the exact degeneracies on the torus by constructing an SU(2) algebra of point-group symmetries, associated with the center of vorticity. This result is interpreted as if each vortex carries an internal spin-half degree of freedom (vspin), which can manifest itself as a charge density modulation in its core. Our findings suggest interesting experimental implications for vortex motion of cold atoms in optical lattices, and magnet-transport of short coherence length superconductors.