We theoretically demonstrate the formation of different kinds of two-dimensional split-ring arrays in both triangular and square lattices by one-step holographic interference. The slit width of the split-ring can be adjusted by proper polarization configurations. The dimension of the rings can be adjusted easily by using different wavelengths for interference, so the resonant frequency of the split-rings can be obtained in a wide range. Our theory is also proved in experiment. Our work would extend the application of holographic lithography to the fabrication of magnetic metamaterials.