Do you want to publish a course? Click here

X-ray Luminosity Functions of Normal Galaxies in the GOODS

105   0   0.0 ( 0 )
 Added by Andrew Ptak
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present soft (0.5-2 keV) X-ray luminosity functions (XLFs) in the Great Observatories Origins Deep Survey (GOODS) fields, derived for galaxies at z~0.25 and 0.75. SED fitting was used to estimate photometric redshifts and separate galaxy types, resulting in a sample of 40 early-type galaxies and 46 late-type galaxies. We estimate k-corrections for both the X-ray/optical and X-ray/NIR flux ratios, which facilitates the separation of AGN from the normal/starburst galaxies. We fit the XLFs with a power-law model using both traditional and Markov-Chain Monte Carlo (MCMC) procedures. The XLFs differ between z<0.5 and z>0.5, at >99% significance levels for early-type, late-type and all (early and late-type) galaxies.We also fit Schechter and log-normal models to the XLFs, fitting the low and high redshift XLFs for a given sample simultaneously assuming only pure luminosity evolution. In the case of log-normal fits, the results of MCMC fitting of the local FIR luminosity function were used as priors for the faint and bright-end slopes (similar to ``fixing these parameters at the FIR values except here the FIR uncertainty is included). The best-fit values of the change in log L* with redshift were dlogL* = 0.23 +/- 0.16 dex (for early-type galaxies) and 0.34 +/- 0.12 dex (for late-type galaxies), corresponding to (1+z)^1.6 and (1+z)^2.3. These results were insensitive to whether the Schechter or log-normal function was adopted.



rate research

Read More

We present photometric redshifts and associated probability distributions for all detected sources in the Extended Chandra Deep Field South (ECDFS). The work makes use of the most up-to-date data from the Cosmic Assembly Near-IR Deep Legacy Survey (CANDELS) and the Taiwan ECDFS Near-Infrared Survey (TENIS) in addition to other data. We also revisit multi-wavelength counterparts for published X-ray sources from the 4Ms-CDFS and 250ks-ECDFS surveys, finding reliable counterparts for 1207 out of 1259 sources ($sim 96%$). Data used for photometric redshifts include intermediate-band photometry deblended using the TFIT method, which is used for the first time in this work. Photometric redshifts for X-ray source counterparts are based on a new library of AGN/galaxy hybrid templates appropriate for the faint X-ray population in the CDFS. Photometric redshift accuracy for normal galaxies is 0.010 and for X-ray sources is 0.014, and outlier fractions are $4%$ and $5.4%$ respectively. The results within the CANDELS coverage area are even better as demonstrated both by spectroscopic comparison and by galaxy-pair statistics. Intermediate-band photometry, even if shallow, is valuable when combined with deep broad-band photometry. For best accuracy, templates must include emission lines.
We use all available deep optical ACS and near-IR data over both the HUDF and the two GOODS fields to search for star-forming galaxies at z>~7 and constrain the UV LF within the first 700 Myrs. Our data set includes ~23 arcmin^2 of deep NICMOS J+H data and ~248 arcmin^2 of ground-based (ISAAC+MOIRCS) data, coincident with ACS optical data of greater or equal depths. In total, we find 8 <z>~7.3 z-dropouts in our search fields, but no z~9 J-dropout candidates. A careful consideration of a wide variety of different contaminants suggest an overall contamination level of just ~12% for our z-dropout selection. After performing detailed simulations to accurately estimate the selection volumes, we derive constraints on the UV LFs at z~7 and z~9. For a faint-end slope alpha=-1.74, our most likely values for M*(UV) and phi* at z~7 are -19.8+/-0.4 mag and 1.1_{-0.7}^{+1.7} x 10^{-3} Mpc^{-3}, respectively. Our search results for z~9 J-dropouts set a 1 sigma lower limit on M*(UV) of -19.6 mag assuming that phi* and alpha are the same as their values at slightly later times. This lower limit on M*(UV) is 1.4 mag fainter than our best-fit value at z~4, suggesting that the UV LF has undergone substantial evolution over this time period. No evolution is ruled out at 99% confidence from z~7 to z~6 and at 80% confidence from z~9 to z~7. The inferred brightening in M*(UV) with redshift (i.e., M*(UV) = (-21.02+/-0.09) + (0.36+/-0.08)(z - 3.8)) matches the evolution expected in the halo mass function, if the mass-to-light ratio of halos evolves as ~(1+z)**{-1}. Finally, we consider the shape of the UV LF at z>~5 and discuss the implications of the Schechter-like form of the observed LFs, particularly the unexpected abrupt cut-off at the bright end.
86 - A. Georgakakis 2006
We use the number counts of X-ray selected normal galaxies to explore their evolution by combining the most recent wide-angle shallow and pencil-beam deep samples available. The differential X-ray number counts, dN/dS, for early and late-type normal galaxies are constructed separately and then compared with the predictions of the local X-ray luminosity function under different evolution scenarios. The dN/dS of early type galaxies is consistent with no evolution out to z~0.5. For late-type galaxies our analysis suggests that it is the sources with X-ray--to--optical flux ratio logfx/fopt>-2 that are evolving the fastest. Including these systems in the late-type galaxy sample yields evolution of the form ~(1+z)^{2.7} out to z~0.4. On the contrary late-type sources with logfx/fopt<-2 are consistent with no evolution. This suggests that the logfx/fopt>-2 population comprises the most powerful and fast evolving starbursts at moderate and high-z. We argue that although residual low-luminosity AGN contamination may bias our results toward stronger evolution, this is unlikely to modify our main conclusions.
115 - D. Rosa Gonzalez 2009
In an effort to understand the correlation between X-ray emission and present star formation rate (SFR), we obtained XMM-Newton data to estimate the X-ray luminosities of a sample of actively starforming HII galaxies. The obtained X-ray luminosities are compared to other well known tracers of star formation activity such as the far infrared and the ultraviolet luminosities. We also compare the obtained results with empirical laws from the literature and with recently published analysis applying synthesis models. We use the time delay between the formation of the stellar cluster and that of the first X-ray binaries, in order to put limits on the age of a given stellar burst. We conclude that the generation of soft X-rays, as well as the Ha or infrared luminosities is instantaneous. The relation between the observed radio and hard X-ray luminosities, on the other hand, points to the existence of a time delay between the formation of the stellar cluster and the explosion of the first massive stars and the consequent formation of supernova remnants and high mass X-ray binaries (HMXB) which originate the radio and hard X-ray fluxes respectively. When comparing hard X-rays with a star formation indicator that traces the first million years of evolution (e.g. Ha luminosities) we found a deficit in the expected X-ray luminosity. This deficit is not found when the X-ray luminosities are compared with infrared luminosities, a star formation tracer that represents an average over the last 10^8 years. The results support the hypothesis that hard X-rays are originated in X-ray binaries which, as supernova remnants, have a formation time delay of a few mega years after the starforming burst.
We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the young early-type galaxy NGC 3384 (~2-5 Gyr) has an excess of luminous field LMXBs (L_X > (5-10) x 10^37 erg/s) per unit K-band luminosity (L_K; a proxy for stellar mass) than the old early-type galaxies NGC 3115 and 3379 (~8-10 Gyr), which results in a factor of ~2-3 excess of LX/LK for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا