We propose a characterisation of the effects of bistable coherent impurities in solid state qubits. We introduce an effective impurity description in terms of a tunable spin-boson environment and solve the dynamics for the qubit coherences. The dominant rate characterizing the asymptotic time limit is identified and signatures of non-Gaussian behavior of the quantum impurity at intermediate times are pointed out. An alternative perspective considering the qubit as a measurement device for the spin-boson impurity is proposed.