No Arabic abstract
The yellow hypergiant stars (YHGs) are extremely luminous and massive objects whose general properties are poorly known. Only two of this kind of star show massive circumstellar envelopes, IRC+10420 and AFGL2343. We aim to study the chemistry of the circumstellar envelopes around these two sources, by comparison with well known AGB stars and protoplanetary nebulae. We also estimate the abundances of the observed molecular species. We have performed single-dish observations of different transitions for twelve molecular species. We have compared the ratio of the intensities of the molecular transitions and of the estimated abundances in AFGL2343 and IRC+10420 with those in O-rich and C-rich AGB stars and protoplanetary nebulae. Both YHGs, AFGL2343, and IRC+10420, have been found to have an O-rich chemistry similar to that in O-rich AGB stars, though for AFGL2343 the emission of most molecules compared with 13CO lines is relatively weak. Clear differences with the other evolved sources appear when we compare the line intensity corrected for distance and the profile widths which are, respectively, very intense and very wide in YHGs. The abundances obtained for IRC+10420 agree with those found in AGB stars, but in general those found in AFGL2343, except for 13CO, are too low. This apparently low molecular abundance in AFGL2343 could be due to the fact that these molecules are present only in an inner region of the shell where the mass is relatively low.
Aims. Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is of paramount importance to understand the chemical evolution of the gas in warm disks. Methods. We used the IRAM 30-m telescope to perform a sensitive search for molecular lines in AB Aur as part of the IRAM Large program ASAI (A Chemical Survey of Sun-like Star-forming Regions). These data were complemented with interferometric observations of the HCO+ 1-0 and C17O 1-0 lines using the IRAM Plateau de Bure Interferometer (PdBI). Single-dish and interferometric data were used to constrain chemical models. Results. Throughout the survey, several lines of CO and its isotopologues, HCO+, H2CO, HCN, CN and CS, were detected. In addition, we detected the SO 54-33 and 56-45 lines, confirming the previous tentative detection. Comparing to other T Tauris and Herbig Ae disks, AB Aur presents low HCN 3-2/HCO+ 3-2 and CN 2-1/HCN 3-2 line intensity ratios, similar to other transition disks. AB Aur is the only protoplanetary disk detected in SO thus far. Conclusions. We modeled the line profiles using a chemical model and a radiative transfer 3D code. Our model assumes a flared disk in hydrostatic equilibrium. The best agreement with observations was obtained for a disk with a mass of 0.01 Msun , Rin=110 AU, Rout=550 AU, a surface density radial index of 1.5 and an inclination of 27 deg. The intensities and line profiles were reproduced within a factor of 2 for most lines. This agreement is reasonable taking into account the simplicity of our model that neglects any structure within the disk. However, the HCN 3-2 and CN 2-1 line intensities were predicted more intense by a factor of >10. We discuss several scenarios to explain this discrepancy.
The evolution of massive stars surviving the red supergiant (RSG) stage remains unexplored due to the rarity of such objects. The yellow hypergiants (YHGs) appear to be the warm counterparts of post-RSG classes located near the Humphreys-Davidson upper luminosity limit, which are characterized by atmospheric instability and high mass-loss rates. We aim to increase the number of YHGs in M33 and thus to contribute to a better understanding of the pre-supernova evolution of massive stars. Optical spectroscopy of five dust-enshrouded YSGs selected from mid-IR criteria was obtained with the goal of detecting evidence of extensive atmospheres. We also analyzed BVI photometry for 21 of the most luminous YSGs in M33 to identify changes in the spectral type. To explore the properties of circumstellar dust, we performed SED-fitting of multi-band photometry of the 21 YSGs. We find three luminous YSGs in our sample to be YHG candidates, as they are surrounded by hot dust and are enshrouded within extended, cold dusty envelopes. Our spectroscopy of star 2 shows emission of more than one H$alpha$ component, as well as emission of CaII, implying an extended atmospheric structure. In addition, the long-term monitoring of the star reveals a dimming in the visual light curve of amplitude larger than 0.5 mag that caused an apparent drop in the temperature that exceeded 500 K. We suggest the observed variability to be analogous to that of the Galactic YHG $rho$ Cas. Five less luminous YSGs are suggested as post-RSG candidates showing evidence of hot or/and cool dust emission. We demonstrate that mid-IR photometry, combined with optical spectroscopy and time-series photometry, provide a robust method for identifying candidate YHGs. Future discovery of YHGs in Local Group galaxies is critical for the study of the late evolution of intermediate-mass massive stars.
The circumstellar envelope of the hypergiant star IRC+10420 has been traced as far out in SiO J=2-1 as in CO J = 1-0 and CO J = 2-1, in dramatic contrast with the centrally condensed (thermal) SiO- but extended CO-emitting envelopes of giant and supergiant stars. Here, we present an observation of the circumstellar envelope in SiO J=1-0 that, when combined with the previous observation in {sioii}, provide more stringent constraints on the density of the SiO-emitting gas than hitherto possible. The emission in SiO peaks at a radius of $sim$2arcsec whereas that in SiO J=2-1 emission peaks at a smaller radius of $sim$1arcsec, giving rise to their ring-like appearances. The ratio in brightness temperature between SiO J=1-0 and SiO J=2-1 decreases from a value well above unity at the innermost measurable radius to about unity at radius of $sim$2arcsec, beyond which this ratio remains approximately constant. Dividing the envelope into three zones as in models for the CO J = 1-0 and CO J = 2-1 emission, we show that the density of the SiO-emitting gas is comparable with that of the CO-emitting gas in the inner zone, but at least an order of magnitude higher by comparison in both the middle and outer zones. The SiO-emitting gas therefore originates from dense clumps, likely associated with the dust clumps seen in scattered optical light, surrounded by more diffuse CO-emitting interclump gas. We suggest that SiO molecules are released from dust grains due to shock interactions between the dense SiO-emitting clumps and the diffuse CO-emitting interclump gas.
The aim of this work is to shed some light on the problem of the formation of carbon stars of R-type from a detailed study of their chemical composition. We use high-resolution and high signal-to-noise optical spectra of 23 R-type stars selected from the Hipparcos catalogue. The chemical analysis is made using spectral synthesis in LTE and state-of-the-art carbon-rich spherical model atmospheres. We derive their CNO content (including the carbon isotopic ratio), average metallicity, lithium, and light (Sr, Y, Zr) and heavy (Ba, La, Nd, Sm) s-element abundances. The observed properties of the stars (galactic distribution, kinematics, binarity, photometry and luminosity) are also discussed. Our analysis shows that late-R stars are carbon stars with identical chemical and observational characteristics than the normal (N-type) AGB carbon stars. We confirm the results of the sole previous abundance analysis of early-R stars by Dominy (1984, ApJS, 55, 27), namely: they are carbon stars with near solar metallicity showing enhanced nitrogen, low carbon isotopic ratios and no s-element enhancements. In addition, we have found that early-R stars have Li abundances larger than expected for post RGB tip giants. We also find that a significant number (aprox. 40 %) of the early-R stars in our sample are wrongly classified, being probably classical CH stars and normal K giants. In consequence, we suggest that the number of true R stars is considerably lower than previously believed. We briefly discuss the different scenarios proposed for the formation of early-R stars. The mixing of carbon during an anomalous He-flash is favoured, although no physical mechanism able to trigger that mixing has been found yet. The origin of these stars still remains a mystery.
Among evolved massive stars likely in transition to the Wolf-Rayet phase, IRC +10420 is probably one of the most enigmatic. It belongs to the category of yellow hypergiants and it is characterized by quite high mass loss episodes. Even though IRC +10420 benefited of many observations in several wavelength domains, it has never been a target for an X-ray observatory. We report here on the very first dedicated observation of IRC +10420 in X-rays, using the XMM-Newton satellite. Even though the target is not detected, we derive X-ray flux upper limits of the order of 1--3 10^-14 erg cm^-2 s^-1 (between 0.3 and 10.0 keV), and we discuss the case of IRC +10420 in the framework of emission models likely to be adequate for such an object. Using the Optical/UV Monitor on board XMM-Newton, we present the very first upper limits of the flux density of IRC +10420 in the UV domain (between 1800 and 2250 A, and between 2050 and 2450 A). Finally, we also report on the detection in this field of 10 X-ray and 7 UV point sources, and we briefly discuss their properties and potential counterparts at longer wavelengths.