No Arabic abstract
Galactic disks in triaxial dark matter halos become deformed by the elliptical potential in the plane of the disk in such a way as to counteract the halo ellipticity. We develop a technique to calculate the equilibrium configuration of such a disk in the combined disk-halo potential, which is based on the method of Jog (2000) but accounts for the radial variation in both the halo potential and the disk ellipticity. This crucial ingredient results in qualitatively different behavior of the disk: the disk circularizes the potential at small radii, even for a reasonably low disk mass. This effect has important implications for proposals to reconcile cuspy halo density profiles with low surface brightness galaxy rotation curves using halo triaxiality. The disk ellipticities in our models are consistent with observational estimates based on two-dimensional velocity fields and isophotal axis ratios.
We have constructed realistic, self-consistent models of triaxial elliptical galaxies embedded in triaxial dark matter halos. Self-consistent solutions by means of the standard orbital superposition technique introduced by Schwarzschild were found in each of the three cases studied. Chaotic orbits were found to be important in all of the models, and their presence was shown to imply a possible slow evolution of the shapes of the halos. The equilibrium velocity distribution is reproduced by a Lorentzian function better than by a Gaussian. Our results demonstrate for the first time that triaxial dark matter halos can co-exist with triaxial galaxies.
Wave dark matter ($psi$DM), which satisfies the Schrodinger-Poisson equation, has recently attracted substantial attention as a possible dark matter candidate. Numerical simulations have in the past provided a powerful tool to explore this new territory of possibility. Despite their successes to reveal several key features of $psi$DM, further progress in simulations is limited, in that cosmological simulations so far can only address formation of halos below $sim 2times 10^{11} M_odot$ and substantially more massive halos have become computationally very challenging to obtain. For this reason, the present work adopts a different approach in assessing massive halos by constructing wave-halo solutions directly from the wave distribution function. This approach bears certain similarity with the analytical construction of particle-halo (cold dark matter model). Instead of many collisionless particles, one deals with one single wave that has many non-interacting eigenstates. The key ingredient in the wave-halo construction is the distribution function of the wave power, and we use several halos produced by structure formation simulations as templates to determine the wave distribution function. Among different models, we find the fermionic King model presents the best fits and we use it for our wave-halo construction. We have devised an iteration method for constructing the nonlinear halo, and demonstrate its stability by three-dimensional simulations. A Milky-Way-sized halo has also been constructed, and the inner halo is found flatter than the NFW profile. These wave-halos have small-scale interferences both in space and time producing time-dependent granules. While the spatial scale of granules varies little, the correlation time is found to increase with radius by one order of magnitude across the halo.
Disk-halo decompositions of galaxy rotation curves are generally performed in a parametric way. We construct self-consistent models of nonspherical isothermal halos embedding a zero-thickness disk, by assuming that the halo distribution function is a Maxwellian. The method developed here can be used to study other physically-based choices for the halo distribution function and the case of a disk accompanied by a bulge. In a preliminary investigation we note the existence of a fine tuning between the scalelengths R_{Omega} and h, respectively characterizing the rise of the rotation curve and the luminosity profile of the disk, which surprisingly applies to both high surface brightness and low surface brightness galaxies. This empirical correlation identifies a much stronger conspiracy than the one required by the smoothness and flatness of the rotation curve (disk-halo conspiracy). The self-consistent models are characterized by smooth and flat rotation curves for very different disk-to-halo mass ratios, hence suggesting that conspiracy is not as dramatic as often imagined. For a typical rotation curve, with asymptotically flat rotation curve at V_{infty} (the precise value of which can also be treated as a free parameter), and a typical density profile of the disk, self-consistent models are characterized by two dimensionless parameters, which correspond to the dimensional scales (the disk mass-to-light ratio M/L and the halo central density) of standard disk-halo decompositions. We show that if the rotation curve is decomposed by means of our self-consistent models, the disk-halo degeneracy is removed and typical rotation curves are fitted by models that are below the maximum-disk prescription. Similar results are obtained from a study of NGC 3198. Finally, we quantify the flattening of the spheroidal halo, which is significant, especially on the scale of the visible disk.
This papers explores the self similar solutions of the Vlasov-Poisson system and their relation to the gravitational collapse of dynamically cold systems. Analytic solutions are derived for power law potential in one dimension, and extensions of these solutions in three dimensions are proposed. Next the self similarity of the collapse of cold dynamical systems is investigated numerically. The fold system in phase space is consistent with analytic self similar solutions, the solutions present all the proper self-similar scalings. An additional point is the appearance of an $x^{-(1/2)}$ law at the center of the system for initial conditions with power law index larger than $-(1/2)$. It is found that the first appearance of the $x^{-(1/2)}$ law corresponds to the formation of a singularity very close to the center. Finally the general properties of self similar multi dimensional solutions near equilibrium are investigated. Smooth and continuous self similar solutions have power law behavior at equilibrium. However cold initial conditions result in discontinuous phase space solutions, and the smoothed phase space density looses its auto similar properties. This problem is easily solved by observing that the probability distribution of the phase space density $P$ is identical except for scaling parameters to the probability distribution of the smoothed phase space density $P_S$. As a consequence $P_S$ inherit the self similar properties of $P$. This particular property is at the origin of the universal power law observed in numerical simulation for ${rho}/{sigma^3}$. The self similar properties of $P_S$ implies that other quantities should have also an universal power law behavior with predictable exponents. This hypothesis is tested using a numerical model of the phase space density of cold dark matter halos, an excellent agreement is obtained.
We use the usual method of Schwarzschild to construct self-consistent solutions for the triaxial de Zeeuw & Carollo (1996) models with central density cusps. ZC96 models are triaxial generalisations of spherical $gamma$-models of Dehnen whose densities vary as $r^{-gamma}$ near the center and $r^{-4}$ at large radii and hence, possess a central density core for $gamma=0$ and cusps for $gamma > 0$. We consider four triaxial models from ZC96, two prolate triaxials: $(p, q) = (0.65, 0.60)$ with $gamma = 1.0$ and 1.5, and two oblate triaxials: $(p, q) = (0.95, 0.60)$ with $gamma = 1.0$ and 1.5. We compute 4500 orbits in each model for time periods of $10^{5} T_{D}$. We find that a large fraction of the orbits in each model are stochastic by means of their nonzero Liapunov exponents. The stochastic orbits in each model can sustain regular shapes for $sim 10^{3} T_{D}$ or longer, which suggests that they diffuse slowly through their allowed phase-space. Except for the oblate triaxial models with $gamma =1.0$, our attempts to construct self-consistent solutions employing only the regular orbits fail for the remaining three models. However, the self-consistent solutions are found to exist for all models when the stochastic and regular orbits are treated in the same way because the mixing-time, $sim10^{4} T_{D}$, is shorter than the integration time, $10^{5} T_{D}$. Moreover, the ``fully-mixed solutions can also be constructed for all models when the stochastic orbits are fully mixed at 15 lowest energy shells. Thus, we conclude that the self-consistent solutions exist for our selected prolate and oblate triaxial models with $gamma = 1.0$ and 1.5.