Do you want to publish a course? Click here

A Class of Partially Solvable Two-Dimensional Quantum Models with Periodic Potentials

93   0   0.0 ( 0 )
 Added by Mikhail V. Ioffe
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The supersymmetrical approach is used to analyse a class of two-dimensional quantum systems with periodic potentials. In particular, the method of SUSY-separation of variables allowed us to find a part of the energy spectra and the corresponding wave functions (partial solvability) for several models. These models are not amenable to conventional separation of variables, and they can be considered as two-dimensional generalizations of Lame, associated Lame, and trigonometric Razavy potentials. All these models have the symmetry operators of fourth order in momenta, and one of them (the Lame potential) obeys the property of self-isospectrality.



rate research

Read More

The AKLT spin chain is the prototypical example of a frustration-free quantum spin system with a spectral gap above its ground state. Affleck, Kennedy, Lieb, and Tasaki also conjectured that the two-dimensional version of their model on the hexagonal lattice exhibits a spectral gap. In this paper, we introduce a family of variants of the two-dimensional AKLT model depending on a positive integer $n$, which is defined by decorating the edges of the hexagonal lattice with one-dimensional AKLT spin chains of length $n$. We prove that these decorated models are gapped for all $n geq 3$.
The bootstrap determination of the geometrical correlation functions in the two-dimensional Potts model proposed in a paper [arXiv:1607.07224] was later shown in [arXiv:1809.02191] to be incorrect, the actual spectrum of the model being considerably more complex than initially conjectured. We provide in this paper a geometrical interpretation of the four-point functions built in [arXiv:1607.07224], and explain why the results obtained by these authors, albeit incorrect, appeared so close to those of their numerical simulations of the Potts model. Our strategy is based on a cluster expansion of correlation functions in RSOS minimal models, and a subsequent numerical and algebraic analysis of the corresponding $s$-channel spectrum, in full analogy with our early work on the Potts model [arXiv:1809.02191]. Remarkable properties of the lattice amplitudes are uncovered, which explain in particular the truncation of the spectrum of [arXiv:1809.02191] to the much simpler one of the RSOS models, and which will be used in a forthcoming paper to finally determine the geometric four-point functions of the Potts model itself.
We consider the Dirac equation on periodic networks (quantum graphs). The self-adjoint quasi periodic boundary conditions are derived. The secular equation allowing us to find the energy spectrum of the Dirac particles on periodic quantum graphs is obtained. Band spectra of the periodic quantum graphs of different topologies are calculated. Universality of the probability to be in the spectrum for certain graph topologies is observed.
143 - G. Delfino , G. Niccoli 2008
For the simplest quantum field theory originating from a non-trivial fixed point of the renormalization group, the Lee-Yang model, we show that the operator space determined by the particle dynamics in the massive phase and that prescribed by conformal symmetry at criticality coincide.
Quantum sensors based on nitrogen-vacancy centers in diamond have emerged as a promising detection modality for nuclear magnetic resonance (NMR) spectroscopy owing to their micron-scale detection volume and non-inductive based detection. A remaining challenge is to realize sufficiently high spectral resolution and concentration sensitivity for multidimensional NMR analysis of picoliter sample volumes. Here, we address this challenge by spatially separating the polarization and detection phases of the experiment in a microfluidic platform. We realize a spectral resolution of 0.65 +/- 0.05 Hz, an order-of-magnitude improvement over previous diamond NMR studies. We use the platform to perform two-dimensional correlation spectroscopy of liquid analytes within an effective ~20 picoliter detection volume. The use of diamond quantum sensors as in-line microfluidic NMR detectors is a significant step towards applications in mass-limited chemical analysis and single cell biology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا