Do you want to publish a course? Click here

Tunneling between Dilute GaAs Hole Layers

134   0   0.0 ( 0 )
 Added by Shashank Misra
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report interlayer tunneling measurements between very dilute two-dimensional GaAs hole layers. Surprisingly, the shape and temperature-dependence of the tunneling spectrum can be explained with a Fermi liquid-based tunneling model, but the peak amplitude is much larger than expected from the available hole band parameters. Data as a function of parallel magnetic field reveal additional anomalous features, including a recurrence of a zero-bias tunneling peak at very large fields. In a perpendicular magnetic field, we observe a robust and narrow tunneling peak at total filling factor $ u_T=1$, signaling the formation of a bilayer quantum Hall ferromagnet.



rate research

Read More

We report drag measurements on dilute double layer two-dimensional hole systems in the regime of r_s=19~39. We observed a strong enhancement of the drag over the simple Boltzmann calculations of Coulomb interaction, and deviations from the T^2 dependence which cannot be explained by phonon-mediated, plasmon-enhanced, or disorder-related processes. We suggest that this deviation results from interaction effects in the dilute regime.
Two dimensional InAs/GaAs quantum ring (QR) is considered using the effective potential approach. The symmetry of QR shape is violated as it is in the well-known Bohigas annular billiard. We calculate energy spectrum and studied the spatial localization of a single electron in such QR. For weak violation of the QR shape symmetry, the spectrum is presented as a set of quasi-doublets. Tunneling between quasi-doublet states is studied by the dependence on energy of the states. The dependence is changed with variation of the QR geometry that is related to the eccentricity of the QR. An interpretation of the experimental result obtained in [1] is proposed. We show that the chaos-assisted tunneling effect found in this paper can be explained by inter-band interactions occurred by anti-crossing of the levels with different radial quantum numbers.
We report effective hole mass ($m^{*}$) measurements through analyzing the temperature dependence of Shubnikov-de Haas oscillations in dilute (density $p sim 7 times 10^{10}$ cm$^{-2}$, $r_{s} sim 6$) two-dimensional (2D) hole systems confined to a 20 nm-wide, (311)A GaAs quantum well. The holes in this system occupy two nearly-degenerate spin subbands whose $m^{*}$ we measure to be $sim $ 0.2 (in units of the free electron mass). Despite the relatively large $r_{s}$ in our 2D system, the measured $m^{*}$ is in good agreement with the results of our energy band calculations which do not take interactions into account. We hen apply a sufficiently strong parallel magnetic field to fully depopulate one of the spin subbands, and measure $m^{*}$ for the populated subband. We find that this latter $m^{*}$ is surprisingly close to the $m^{*}$ we measure in the absence of the parallel field. We also deduce the spin susceptibility of the 2D hole system from the depopulation field, and conclude that the susceptibility is enhanced by about 50% relative to the value expected from the band calculations.
Several models of thermionic energy nanoconverters have been proposed to study the transport phenomena that take place in electronic devices. For example, in resonant tunneling junctions those phenomena are manifested through the thermoelectric effects. The coupling between the electron flux and the heat flux in this type of semiconductor heterostructures, not only allows to obtain transport coefficients (electrical and thermal conductivities, and a Seebeck--like and Peltier--like coefficients), but also to study its operation as a thermionic generator or as a refrigerator within the context of irreversible thermodynamics. The existence of the characteristic steady states that can be reached by any linear energy converter led us to characterize a family of Seebeck--like coefficients, as well as establish bounds for the values of a kind of figure of merit $(Tz_{D,I})$, both associated with the well-known operating regimes: minimum dissipation function, maximum power output, maximum efficiency and maximum compromise function. By taking as example an $Al_{x}GaAs/GaAs$ junction, we found that the transport coefficients depend strongly on temperature and the conduction band height, which can be modulated according to the selected operation mode.
Vertical heterostructures combining different layered materials offer novel opportunities for applications and fundamental studies of collective behavior driven by inter-layer Coulomb coupling. Here we report heterostructures comprising a single-layer (or bilayer) graphene carrying a fluid of massless (massive) chiral carriers, and a quantum well created in GaAs 31.5 nm below the surface, supporting a high-mobility two-dimensional electron gas. These are a new class of double-layer devices composed of spatially-separated electron and hole fluids. We find that the Coulomb drag resistivity significantly increases for temperatures below 5-10 K, following a logarithmic law. This anomalous behavior is a signature of the onset of strong inter-layer correlations, compatible with the formation of a condensate of permanent excitons. The ability to induce strongly-correlated electron-hole states paves the way for the realization of coherent circuits with minimal dissipation and nanodevices including analog-to-digital converters and topologically protected quantum bits.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا