Do you want to publish a course? Click here

Kinetic-Ion Simulations Addressing Whether Ion Trapping Inflates Stimulated Brillouin Backscattering Reflectivities

139   0   0.0 ( 0 )
 Added by Bruce Cohen I
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

An investigation of the possible inflation of stimulated Brillouin backscattering (SBS) due to ion kinetic effects is presented using electromagnetic particle simulations and integrations of three-wave coupled-mode equations with linear and nonlinear models of the nonlinear ion physics. Electrostatic simulations of linear ion Landau damping in an ion acoustic wave, nonlinear reduction of damping due to ion trapping, and nonlinear frequency shifts due to ion trapping establish a baseline for modeling the electromagnetic SBS simulations. Systematic scans of the laser intensity have been undertaken with both one-dimensional particle simulations and coupled-mode-equations integrations, and two values of the electron-to-ion temperature ratio (to vary the linear ion Landau damping) are considered. Three of the four intensity scans have evidence of SBS inflation as determined by observing more reflectivity in the particle simulations than in the corresponding three-wave mode-coupling integrations with a linear ion-wave model, and the particle simulations show evidence of ion trapping.



rate research

Read More

Stimulated Brillouin backscattering of light is shown to be drastically enhanced in electron-positron plasmas, in contrast to the suppression of stimulated Raman scattering. A generalized theory of three-wave coupling between electromagnetic and plasma waves in two-species plasmas with arbitrary mass ratios, confirmed with a comprehensive set of particle-in-cell simulations, reveals violations of commonly-held assumptions about the behavior of electron-positron plasmas. Specifically, in the electron-positron limit three-wave parametric interaction between light and the plasma acoustic wave can occur, and the acoustic wave phase velocity differs from its usually assumed value.
239 - J.T. Mendonc{c}a , B. Thide , 2009
We study theoretically the exchange of angular momentum between electromagnetic and electrostatic waves in a plasma, due to the stimulated Raman and Brillouin backscattering processes. Angular momentum states for plasmon and phonon fields are introduced for the first time. We demonstrate that these states can be excited by nonlinear wave mixing, associated with the scattering processes. This could be relevant for plasma diagnostics, both in laboratory and in space. Nonlinearly coupled paraxial equations and instability growth rates are derived.
Plasma-based parametric amplification using stimulated Brillouin scattering offers a route to coherent x-ray pulses orders-of-magnitude more intense than those of the brightest available sources. Brillouin amplification permits amplification of shorter wavelengths with lower pump intensities than Raman amplification, which Landau and collisional damping limit in the x-ray regime. Analytic predictions, numerical solutions of the three-wave coupling equations, and particle-in-cell simulations suggest that Brillouin amplification in solid-density plasmas will allow compression of current x-ray free electron laser pulses to sub-femtosecond durations and unprecedented intensities.
The performance of direct-drive inertial confinement fusion implosions relies critically on the coupling of laser energy to the target plasma. Cross-beam energy transfer (CBET), the resonant exchange of energy between intersecting laser beams mediated by ponderomotively driven ion-acoustic waves (IAW), inhibits this coupling by scattering light into unwanted directions. The variety of beam intersection angles and varying plasma conditions in an implosion results in IAWs with a range of phase velocities. Here we show that CBET saturates through a resonance detuning that depends on the IAW phase velocity and that results from trapping-induced modifications to the ion distribution functions. For smaller phase velocities, the modifications to the distribution functions can rapidly thermalize in the presence of mid-Z ions, leading to a blueshift in the resonant frequency. For larger phase velocities, the modifications can persist, leading to a redshift in the resonant frequency. Ultimately, these results may reveal pathways towards CBET mitigation and inform reduced models for radiation hydrodynamics codes to improve their predictive capability.
A novel regime of self-compression is proposed for plasma-based backward Raman amplification(BRA) upon flying focus. By using a pumping focus moving with a speed equal to the group velocity of stimulated Raman backscattering(SRBS), only a short part of SRBS which does always synchronize with the flying focus can be amplified. Due to the asymmetrical amplification, the pulse can be directly compressed in the linear stage of BRA. Therefore, instead of a short pulse, the Raman spontaneous or a long pulse can seed the BRA amplifiers. The regime is supported by the 2D particle-in-cell(PIC) simulation without a seed, presenting that the pump pulse is compressed from 26ps to 116fs, with an output amplitude comparable with the case of a well-synchronized short seed. This method provides a significant way to simplify the Raman amplifiers and overcome the issue of synchronization jitter between the pump and the seed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا