Do you want to publish a course? Click here

Lagrangian temperature, velocity and local heat flux measurement in Rayleigh-Benard convection

96   0   0.0 ( 0 )
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have developed a small, neutrally buoyant, wireless temperature sensor. Using a camera for optical tracking, we obtain simultaneous measurements of position and temperature of the sensor as it is carried along by the flow in Rayleigh-Benard convection, at $Ra sim 10^{10}$. We report on statistics of temperature, velocity, and heat transport in turbulent thermal convection. The motion of the sensor particle exhibits dynamics close to that of Lagrangian tracers in hydrodynamic turbulence. We also quantify heat transport in plumes, revealing self-similarity and extreme variations from plume to plume.

rate research

Read More

Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-Benard convection with no-slip horizontal walls for a variety of Prandtl numbers $Pr$ and Rayleigh number up to $Rasim 10^9$. Power law scalings of $Nusim Ra^{gamma}$ are observed with $gammaapprox 0.31$, where the Nusselt number $Nu$ is a non-dimensional measure of the vertical heat transport. Any dependence of the scaling exponent on $Pr$ is found to be extremely weak. On the other hand, the presence of two local maxima of $Nu$ with different horizontal wavenumbers at the same $Ra$ leads to the emergence of two different flow structures as candidates for optimizing the heat transport. For $Pr lesssim 7$, optimal transport is achieved at the smaller maximal wavenumber. In these fluids, the optimal structure is a plume of warm rising fluid which spawns left/right horizontal arms near the top of the channel, leading to downdrafts adjacent to the central updraft. For $Pr > 7$ at high-enough Ra, the optimal structure is a single updraft absent significant horizontal structure, and characterized by the larger maximal wavenumber.
105 - Woodrow L. Shew 2007
We have developed novel instrumentation for making Lagrangian measurements of temperature in diverse fluid flows. A small neutrally buoyant capsule is equipped with on-board electronics which measure temperature and transmit the data via a wireless radio frequency link to a desktop computer. The device has 80 dB dynamic range, resolving milli-Kelvin changes in temperature with up to 100 ms sampling time. The capabilities of these smart particles are demonstrated in turbulent thermal convection in water. We measure temperature variations as the particle is advected by the convective motion, and analyse its statistics. Additional use of cameras allow us to track the particle position and to report here the first direct measurement of Lagrangian heat flux transfer in Rayleigh-B{e}nard convection. The device shows promise for opening new research in a broad variety of fluid systems.
We present mesoscale numerical simulations of Rayleigh-Benard (RB) convection in a two-dimensional model emulsion. The systems under study are constituted of finite-size droplets, whose concentration Phi_0 is systematically varied from small (Newtonian emulsions) to large values (non-Newtonian emulsions). We focus on the characterisation of the heat transfer properties close to the transition from conductive to convective states, where it is known that a homogeneous Newtonian system exhibits a steady flow and a time-independent heat flux. In marked contrast, emulsions exhibit a non-steady dynamics with fluctuations in the heat flux. In this paper, we aim at the characterisation of such non-steady dynamics via detailed studies on the time-averaged heat flux and its fluctuations. To understand the time-averaged heat flux, we propose a side-by-side comparison between the emulsion system and a single-phase (SP) system, whose viscosity is constructed from the shear rheology of the emulsion. We show that such local closure works well only when a suitable degree of coarse-graining (at the droplet scale) is introduced in the local viscosity. To delve deeper into the fluctuations in the heat flux, we propose a side-by-side comparison between a Newtonian emulsion and a non-Newtonian emulsion, at fixed time-averaged heat flux. This comparison elucidates that finite-size droplets and the non-Newtonian rheology cooperate to trigger enhanced heat-flux fluctuations at the droplet scales. These enhanced fluctuations are rooted in the emergence of space correlations among distant droplets, which we highlight via direct measurements of the droplets displacement and the characterisation of the associated correlation function. The observed findings offer insights on heat transfer properties for confined systems possessing finite-size constituents.
We numerically investigate turbulent Rayleigh-Benard convection within two immiscible fluid layers, aiming to understand how the layer thickness and fluid properties affect the heat transfer (characterized by the Nusselt number $Nu$) in two-layer systems. Both two- and three-dimensional simulations are performed at fixed global Rayleigh number $Ra=10^8$, Prandtl number $Pr=4.38$, and Weber number $We=5$. We vary the relative thickness of the upper layer between $0.01 le alpha le 0.99$ and the thermal conductivity coefficient ratio of the two liquids between $0.1 le lambda_k le 10$. Two flow regimes are observed: In the first regime at $0.04lealphale0.96$, convective flows appear in both layers and $Nu$ is not sensitive to $alpha$. In the second regime at $alphale0.02$ or $alphage0.98$, convective flow only exists in the thicker layer, while the thinner one is dominated by pure conduction. In this regime, $Nu$ is sensitive to $alpha$. To predict $Nu$ in the system in which the two layers are separated by a unique interface, we apply the Grossmann-Lohse theory for both individual layers and impose heat flux conservation at the interface. Without introducing any free parameter, the predictions for $Nu$ and for the temperature at the interface well agree with our numerical results and previous experimental data.
In this numerical study on Rayleigh-Benard convection we seek to improve the heat transfer by passive means. To this end we introduce a single tilted conductive barrier centered in an aspect ratio one cell, breaking the symmetry of the geometry and to channel the ascending hot and descending cold plumes. We study the global and local heat transfer and the flow organization for Rayleigh numbers $10^5 leq Ra leq 10^9$ for a fixed Prandtl number of $Pr=4.3$. We find that the global heat transfer can be enhanced up to $18%$, and locally around $800%$. The averaged Reynolds number is always decreased when a barrier is introduced, even for those cases where the global heat transfer is increased. We map the entire parameter space spanned by the orientation and the size of a single barrier for $Ra=10^8$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا