No Arabic abstract
This survey paper describes two geometric representations of the permutation group using the tools of toric topology. These actions are extremely useful for computational problems in Schubert calculus. The (torus) equivariant cohomology of the flag variety is constructed using the combinatorial description of Goresky-Kottwitz-MacPherson, discussed in detail. Two permutation representations on equivariant and ordinary cohomology are identified in terms of irreducible representations of the permutation group. We show how to use the permutation actions to construct divided difference operators and to give formulas for some localizations of certain equivariant classes. This paper includes several new results, in particular a new proof of the Chevalley-Monk formula and a proof that one of the natural permutation representations on the equivariant cohomology of the flag variety is the regular representation. Many examples, exercises, and open questions are provided.
We completely calculate the $RO(G)$-graded coefficients of ordinary equivariant cohomology where $G$ is the dihedral group of order $2p$ for a prime $p>2$ both with constant and Burnside ring coefficients. The authors first proved it for $p=3$ and then the second author generalized it to arbitrary $p$. These are the first such calculations for a non-abelian group.
This paper is a continuations of the project initiated in the book string topology for stacks. We construct string operations on the SO(2)-equivariant homology of the (free) loop space $L(X)$ of an oriented differentiable stack $X$ and show that $H^{SO(2)}_{*+dim(X) -2}(L(X))$ is a graded Lie algebra. In the particular case where $X$ is a 2-dimensional orbifold we give a Goldman-type description for the string bracket. To prove these results, we develop a machinery of (weak) group actions on topological stacks which should be of independent interest. We explicitly construct the quotient stack of a group acting on a stack and show that it is a topological stack. Then use its homotopy type to define equivariant (co)homology for stacks, transfer maps, and so on.
Let $G$ be a discrete group. We prove that the category of $G$-posets admits a model structure that is Quillen equivalent to the standard model structure on $G$-spaces. As is already true nonequivariantly, the three classes of maps defining the model structure are not well understood calculationally. To illustrate, we exhibit some examples of cofibrant and fibrant posets and an example of a non-cofibrant finite poset.
We construct a cocycle model for complex analytic equivariant elliptic cohomology that refines Grojnowskis theory when the group is connected and Devotos when the group is finite. We then construct Mathai--Quillen type cocycles for equivariant elliptic Euler and Thom classes, explaining how these are related to positive energy representations of loop groups. Finally, we show that these classes give a unique equivariant refinement of Hopkins theorem of the cube construction of the ${rm MString}$-orientation of elliptic cohomology.
We compute the integral torus-equivariant cohomology ring for weighted projective space for two different torus actions by embedding the cohomology in a sum of polynomial rings $oplus_{i=0}^n Z[t_1, t_2,..., t_n]$. One torus action gives a result complementing that of Bahri, Franz, and Ray. For the other torus action, each basis class for weighted projective space is a multiple of the basis class for ordinary projective space; we identify each multiple explicitly. We also give a simple formula for the structure constants of the equivariant cohomology ring of ordinary projective space in terms of the basis of Schubert classes, as a sequence of divided difference operators applied to a specific polynomial.