No Arabic abstract
Every ring extension of $A$ by $R$ induces a pair of group homomorphisms $mathcal{L}^{*}:Rto End_Z(A)/L(A);mathcal{R}^{*}:Rto End_Z(A)/R(A),$ preserving multiplication, satisfying some certain conditions. A such 4-tuple $(R,A,mathcal{L}^{*},mathcal{R}^{*})$ is called a ring pre-extension. Each ring pre-extension induces a $R$-bimodule structure on bicenter $K_A$ of ring $A,$ and induces an obstruction $k,$ which is a 3-cocycle of $Z$-algebra $R,$ with coefficients in $R$-bimodule $K_A$ in the sense of Shukla. Each obstruction $k$ in this sense induces a structure of a regular Ann-category of type $(R,K_A).$ This result gives us the first application of Ann-category in extension problems of algebraic structures, as well as in cohomology theories.
In this paper we study the structure of a class of categories having two operations which satisfy axioms analoguos to that of rings. Such categories are called Ann - categories. We obtain the classification theorems for regular Ann - categories and Ann - functors by using Mac Lane - Shukla cohomology of rings. These results give new interpretations of the cohomology groups and of the rings
In this paper we present some applications of Ann-category theory to classification of crossed bimodules over rings, classification of ring extensions of the type of a crossed bimodule.
We study track categories (i.e., groupoid-enriched categories) endowed with additive structure similar to that of a 1-truncated DG-category, except that composition is not assumed right linear. We show that if such a track category is right linear up to suitably coherent correction tracks, then it is weakly equivalent to a 1-truncated DG-category. This generalizes work of the first author on the strictification of secondary cohomology operations. As an application, we show that the secondary integral Steenrod algebra is strictifiable.
Univalence was first defined in the setting of homotopy type theory by Voevodsky, who also (along with Kapulkin and Lumsdaine) adapted it to a model categorical setting, which was subsequently generalized to locally Cartesian closed presentable $infty$-categories by Gepner and Kock. These definitions were used to characterize various $infty$-categories as models of type theories. We give a definition for univalent morphisms in finitely complete $infty$-categories that generalizes the aforementioned definitions and completely focuses on the $infty$-categorical aspects, characterizing it via representability of certain functors, which should remind the reader of concepts such as adjunctions or limits. We then prove that in a locally Cartesian closed $infty$-category (that is not necessarily presentable) univalence of a morphism is equivalent to the completeness of a certain Segal object we construct out of the morphism, characterizing univalence via internal $infty$-categories, which had been considered in a strict setting by Stenzel. We use these results to study the connection between univalence and elementary topos theory. We also study univalent morphisms in the category of groups, the $infty$-category of $infty$-categories, and pointed $infty$-categories.
We study properties of the category of modules of an algebra object A in a tensor category C. We show that the module category inherits various structures from C, provided that A is a Frobenius algebra with certain additional properties. As a by-product we obtain results about the Frobenius-Schur indicator in sovereign tensor categories. A braiding on C is not needed, nor is semisimplicity. We apply our results to the description of boundary conditions in two-dimensional conformal field theory and present illustrative examples. We show that when the module category is tensor, then it gives rise to a NIM-rep of the fusion rules, and discuss a possible relation with the representation theory of vertex operator algebras.