No Arabic abstract
We investigate the production of nitrogen in star forming galaxies with ultraviolet (UV) radiation detected by the Galaxy Evolution Explorer Satellite (GALEX). We use a sample of 8,745 GALEX emission line galaxies matched to the Sloan Digital Sky Survey (SDSS) spectroscopic sample. We derive both gas-phase oxygen and nitrogen abundances for the sample, and apply stellar population synthesis models to derive stellar masses and star formation histories of the galaxies. We compare oxygen abundances derived using three different diagnostics. We derive the specific star formation rates of the galaxies by modeling the 7-band GALEX+SDSS photometry. We find that galaxies that have log SFR/M$_*$ > -10.0 typically have values of log N/O ~0.05 dex less than galaxies with log SFR/M$_*$ < -10.0 and similar oxygen abundances.
We present the results of nitrogen and oxygen abundance measurements for 185 HII regions spanning a range of radius in 13 spiral galaxies. As expected, the nitrogen-to-oxygen ratio increases linearly with the oxygen abundance for high metallicity HII regions, indicating that nitrogen is predominately a secondary element. However, the nitrogen-to-oxygen ratio plateaus for oxygen abundances less than 1/3 solar (12+log(O/H) < 8.45), as is also seen in low metallicity dwarf galaxies. This result suggests that the observed trend in dwarf galaxies is not due to outflow of enriched material in a shallow gravitational potential. While the effects of infall of pristine material and delayed nitrogen delivery are still unconstrained, nitrogen does appear to have both a primary and secondary component at low metallicities in all types of galaxies.
We discuss the UV, optical, and IR properties of the SDSS sources detected by GALEX as part of its All-sky Imaging Survey Early Release Observations. Virtually all of the GALEX sources in the overlap region are detected by SDSS. GALEX sources represent ~2.5% of all SDSS sources within these fields and about half are optically unresolved. Most unresolved GALEX/SDSS sources are bright blue turn-off thick disk stars and are typically detected only in the GALEX near-UV band. The remaining unresolved sources include low-redshift quasars, white dwarfs, and white dwarf/M dwarf pairs, and these dominate the optically unresolved sources detected in both GALEX bands. Almost all the resolved SDSS sources detected by GALEX are fainter than the SDSS main spectroscopic limit. These sources have colors consistent with those of blue (spiral) galaxies (u-r<2.2), and most are detected in both GALEX bands. Measurements of their UV colors allow much more accurate and robust estimates of star-formation history than are possible using only SDSS data. Indeed, galaxies with the most recent (<20 Myr) star formation can be robustly selected from the GALEX data by requiring that they be brighter in the far-UV than in the near-UV band. However, older starburst galaxies have UV colors similar to AGN, and thus cannot be selected unambiguously on the basis of GALEX fluxes alone. With the aid of 2MASS data, we construct and discuss median 10 band UV-optical-IR spectral energy distributions for turn-off stars, hot white dwarfs, low-redshift quasars, and spiral and elliptical galaxies. We point out the high degree of correlation between the UV color and the contribution of the UV flux to the UV-optical-IR flux of galaxies detected by GALEX.
We discuss the panchromatic properties of 99,088 galaxies selected from the SDSS Data Release 1 spectroscopic sample (a flux-limited sample for 1360 deg^2). These galaxies are positionally matched to sources detected by ROSAT, GALEX, 2MASS, IRAS, GB6, FIRST, NVSS and WENSS. We find strong correlations between the detection fraction at other wavelengths and optical properties such as flux, colors, and emission-line strengths. Using GALEX, SDSS, and 2MASS data, we construct the UV-IR broad-band spectral energy distributions for various types of galaxies, and find that they form a nearly one-parameter family. For example, based on SDSS u- and r-band data, supplemented with redshift, the K-band 2MASS magnitudes can be predicted with an rms scatter of only 0.2 mag. When a dust content estimate determined from SDSS data by Kauffmann et al. (2003) is also utilized, this scatter decreases to 0.1 mag. We demonstrate that this dust content is indeed higher for galaxies detected by IRAS and that it can be used to predict measured IRAS 60 micron flux density within a factor of two using only SDSS data. We also show that the position of a galaxy in the emission-line-based Baldwin-Phillips-Terlevich diagram is correlated with the optical light concentration index and u-r color determined from the SDSS broad-band imaging data, and discuss changes in the morphology of this diagram induced by requiring detections at other wavelengths. We study the IR-radio correlation and find evidence that its slope may be different for AGN and star-forming galaxies and related to the H_alpha/H_beta line strength ratio.
We investigate the properties of the galaxies that reionized the Universe and the history of cosmic reionization using the Evolution and Assembly of GaLaxies and their environments (EAGLE) cosmological hydrodynamical simulations. We obtain the evolution of the escape fraction of ionizing photons in galaxies assuming that galactic winds create channels through which 20~percent of photons escape when the local surface density of star formation is greater than $0.1$ M$_odot$ yr$^{-1}$ kpc$^{-2}$. Such threshold behaviour for the generation of winds is observed, and the rare local objects which have such high star formation surface densities exhibit high escape fractions of $sim 10$ percent. In our model the luminosity-weighted mean escape fraction increases with redshift as $bar f_{rm esc}=0.045~((1+z)/4)^{1.1}$ at $z>3$, and the galaxy number weighted mean as $langle f_{rm esc} rangle=2.2times10^{-3}~((1+z)/4)^4$, and becomes constant $approx0.2$ at redshift $z>10$. The escape fraction evolves as an increasingly large fraction of stars forms above the critical surface density of star formation at earlier times. This evolution of the escape fraction, combined with that of the star formation rate density from EAGLE, reproduces the inferred evolution of the filling factor of ionized regions during the reionization epoch ($6<z<8$), the evolution of the post-reionization ($0leq z<6$) hydrogen photoionisation rate, and the optical depth due to Thomson scattering of the cosmic microwave background photons measured by the Planck satellite.
We report the first direct detection with Spitzer of galaxy filaments. Using Spitzer and ancillary optical data, we have discovered two filamentary structures in the outskirts of the cluster Abell 1763. Both filaments point toward Abell 1770 which lies at the same redshift as Abell 1763 (z=0.23), at a projected distance of ~13 Mpc. The X-ray cluster emission is elongated along the same direction. Most of the far-infrared emission is powered by star formation. According to the optical spectra, only one of the cluster members is classified as an active galactic nucleus. Star formation is clearly enhanced in galaxies along the filaments: the fraction of starburst galaxies in the filaments is more than twice than that in other cluster regions. We speculate that these filaments are feeding the cluster Abell 1763 by the infall of galaxies and galaxy groups. Evidence for one of these groups is provided by the analysis of galaxy kinematics in the central cluster region.