Do you want to publish a course? Click here

Tight bounds on the concurrence of quantum superpositions

116   0   0.0 ( 0 )
 Added by Julien Niset Mr
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The entanglement content of superpositions of quantum states is investigated based on a measure called {it concurrence}. Given a bipartite pure state in arbitrary dimension written as the quantum superposition of two other such states, we find simple inequalities relating the concurrence of the state to that of its components. We derive an exact expression for the concurrence when the component states are biorthogonal, and provide elegant upper and lower bounds in all other cases. For quantum bits, our upper bound is tighter than the previously derived bound in [Phys. Rev. Lett. 97, 100502 (2006).]



rate research

Read More

We derive the lower and upper bounds on the entanglement of a given multipartite superposition state in terms of the entanglement of the states being superposed. The first entanglement measure we use is the geometric measure, and the second is the q-squashed entanglement. These bounds allow us to estimate the amount of the multipartite entanglement of superpositions. We also show that two states of high fidelity to one another do not necessarily have nearly the same q-squashed entanglement.
The estimation of multiple parameters in quantum metrology is important for a vast array of applications in quantum information processing. However, the unattainability of fundamental precision bounds for incompatible observables has greatly diminished the applicability of estimation theory in many practical implementations. The Holevo Cramer-Rao bound (HCRB) provides the most fundamental, simultaneously attainable bound for multi-parameter estimation problems. A general closed form for the HCRB is not known given that it requires a complex optimisation over multiple variables. In this work, we develop an analytic approach to solving the HCRB for two parameters. Our analysis reveals the role of the HCRB and its interplay with alternative bounds in estimation theory. For more parameters, we generate a lower bound to the HCRB. Our work greatly reduces the complexity of determining the HCRB to solving a set of linear equations that even numerically permits a quadratic speedup over previous state-of-the-art approaches. We apply our results to compare the performance of different probe states in magnetic field sensing, and characterise the performance of state tomography on the codespace of noisy bosonic error-correcting codes. The sensitivity of state tomography on noisy binomial codestates can be improved by tuning two coding parameters that relate to the number of correctable phase and amplitude damping errors. Our work provides fundamental insights and makes significant progress towards the estimation of multiple incompatible observables.
We experimentally measure the lower and upper bounds of concurrence for a set of two-qubit mixed quantum states using photonic systems. The measured concurrence bounds are in agreement with the results evaluated from the density matrices reconstructed through quantum state tomography. In our experiment, we propose and demonstrate a simple method to provide two faithful copies of a two-photon mixed state required for parity measurements: Two photon pairs generated by two neighboring pump laser pulses through optical parametric down conversion processes represent two identical copies. This method can be conveniently generalized for entanglement estimation of multi-photon mixed states.
The bounds of concurrence in [F. Mintert and A. Buchleitner, Phys. Rev. Lett. 98 (2007) 140505] and [C. Zhang textit{et. al.}, Phys. Rev. A 78 (2008) 042308] are proved by using two properties of the fidelity. In two-qubit systems, for a given value of concurrence, the states achieving the maximal upper bound, the minimal lower bound or the maximal difference upper-lower bound are determined analytically.
Establishing long-distance quantum entanglement, i.e., entanglement transmission, in quantum networks (QN) is a key and timely challenge for developing efficient quantum communication. Traditional comprehension based on classical percolation assumes a necessary condition for successful entanglement transmission between any two infinitely distant nodes: they must be connected by at least a path of perfectly entangled states (singlets). Here, we relax this condition by explicitly showing that one can focus not on optimally converting singlets but on establishing concurrence -- a key measure of bipartite entanglement. We thereby introduce a new statistical theory, concurrence percolation theory (ConPT), remotely analogous to classical percolation but fundamentally different, built by generalizing bond percolation in terms of sponge-crossing paths instead of clusters. Inspired by resistance network analysis, we determine the path connectivity by series/parallel rules and approximate higher-order rules via star-mesh transforms. Interestingly, we find that the entanglement transmission threshold predicted by ConPT is lower than the known classical-percolation-based results and is readily achievable on any series-parallel networks such as the Bethe lattice. ConPT promotes our understanding of how well quantum communication can be further systematically improved versus classical statistical predictions under the limitation of QN locality -- a quantum advantage that is more general and efficient than expected. ConPT also shows a percolation-like universal critical behavior derived by finite-size analysis on the Bethe lattice and regular two-dimensional lattices, offering new perspectives for a theory of criticality in entanglement statistics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا