Do you want to publish a course? Click here

Convergence of the Min-Sum Algorithm for Convex Optimization

255   0   0.0 ( 0 )
 Added by Ciamac Moallemi
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We establish that the min-sum message-passing algorithm and its asynchronous variants converge for a large class of unconstrained convex optimization problems.



rate research

Read More

We establish the convergence of the min-sum message passing algorithm for minimization of a broad class of quadratic objective functions: those that admit a convex decomposition. Our results also apply to the equivalent problem of the convergence of Gaussian belief propagation.
We propose an accelerated meta-algorithm, which allows to obtain accelerated methods for convex unconstrained minimization in different settings. As an application of the general scheme we propose nearly optimal methods for minimizing smooth functions with Lipschitz derivatives of an arbitrary order, as well as for smooth minimax optimization problems. The proposed meta-algorithm is more general than the ones in the literature and allows to obtain better convergence rates and practical performance in several settings.
91 - Yibo Xu , Yangyang Xu 2019
Structured problems arise in many applications. To solve these problems, it is important to leverage the structure information. This paper focuses on convex problems with a finite-sum compositional structure. Finite-sum problems appear as the sample average approximation of a stochastic optimization problem and also arise in machine learning with a huge amount of training data. One popularly used numerical approach for finite-sum problems is the stochastic gradient method (SGM). However, the additional compositional structure prohibits easy access to unbiased stochastic approximation of the gradient, so directly applying the SGM to a finite-sum compositional optimization problem (COP) is often inefficient. We design new algorithms for solving strongly-convex and also convex two-level finite-sum COPs. Our design incorporates the Katyusha acceleration technique and adopts the mini-batch sampling from both outer-level and inner-level finite-sum. We first analyze the algorithm for strongly-convex finite-sum COPs. Similar to a few existing works, we obtain linear convergence rate in terms of the expected objective error, and from the convergence rate result, we then establish complexity results of the algorithm to produce an $varepsilon$-solution. Our complexity results have the same dependence on the number of component functions as existing works. However, due to the use of Katyusha acceleration, our results have better dependence on the condition number $kappa$ and improve to $kappa^{2.5}$ from the best-known $kappa^3$. Finally, we analyze the algorithm for convex finite-sum COPs, which uses as a subroutine the algorithm for strongly-convex finite-sum COPs. Again, we obtain better complexity results than existing works in terms of the dependence on $varepsilon$, improving to $varepsilon^{-2.5}$ from the best-known $varepsilon^{-3}$.
We suggest a new greedy strategy for convex optimization in Banach spaces and prove its convergent rates under a suitable behavior of the modulus of uniform smoothness of the objective function.
430 - Yuwen Chen 2020
Derivative-free optimization (DFO) has recently gained a lot of momentum in machine learning, spawning interest in the community to design faster methods for problems where gradients are not accessible. While some attention has been given to the concept of acceleration in the DFO literature, existing stochastic algorithms for objective functions with a finite-sum structure have not been shown theoretically to achieve an accelerated rate of convergence. Algorithms that use acceleration in such a setting are prone to instabilities, making it difficult to reach convergence. In this work, we exploit the finite-sum structure of the objective in order to design a variance-reduced DFO algorithm that provably yields acceleration. We prove rates of convergence for both smooth convex and strongly-convex finite-sum objective functions. Finally, we validate our theoretical results empirically on several tasks and datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا