Do you want to publish a course? Click here

System Design for a Long-Line Quantum Repeater

116   0   0.0 ( 0 )
 Added by Rodney Van Meter
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new control algorithm and system design for a network of quantum repeaters, and outline the end-to-end protocol architecture. Such a network will create long-distance quantum states, supporting quantum key distribution as well as distributed quantum computation. Quantum repeaters improve the reduction of quantum-communication throughput with distance from exponential to polynomial. Because a quantum state cannot be copied, a quantum repeater is not a signal amplifier, but rather executes algorithms for quantum teleportation in conjunction with a specialized type of quantum error correction called purification to raise the fidelity of the quantum states. We introduce our banded purification scheme, which is especially effective when the fidelity of coupled qubits is low, improving the prospects for experimental realization of such systems. The resulting throughput is calculated via detailed simulations of a long line composed of shorter hops. Our algorithmic improvements increase throughput by a factor of up to fifty compared to earlier approaches, for a broad range of physical characteristics.



rate research

Read More

We analyze how the performance of a quantum-repeater network depends on the protocol employed to distribute entanglement, and we find that the choice of repeater-to-repeater link protocol has a profound impact on communication rate as a function of hardware parameters. We develop numerical simulations of quantum networks using different protocols, where the repeater hardware is modeled in terms of key performance parameters, such as photon generation rate and collection efficiency. These parameters are motivated by recent experimental demonstrations in quantum dots, trapped ions, and nitrogen-vacancy centers in diamond. We find that a quantum-dot repeater with the newest protocol (MidpointSource) delivers the highest communication rate when there is low probability of establishing entanglement per transmission, and in some cases the rate is orders of magnitude higher than other schemes. Our simulation tools can be used to evaluate communication protocols as part of designing a large-scale quantum network.
We present a physical- and link-level design for the creation of entangled pairs to be used in quantum repeater applications where one can control the noise level of the initially distributed pairs. The system can tune dynamically, trading initial fidelity for success probability, from high fidelity pairs (F=0.98 or above) to moderate fidelity pairs. The same physical resources that create the long-distance entanglement are used to implement the local gates required for entanglement purification and swapping, creating a homogeneous repeater architecture. Optimizing the noise properties of the initially distributed pairs significantly improves the rate of generating long-distance Bell pairs. Finally, we discuss the performance trade-off between spatial and temporal resources.
Quantum key distribution allows for the generation of a secret key between distant parties connected by a quantum channel such as optical fibre or free space. Unfortunately, the rate of generation of a secret key by direct transmission is fundamentally limited by the distance. This limit can be overcome by the implementation of so-called quantum repeaters. Here, we assess the performance of a specific but very natural setup called a single sequential repeater for quantum key distribution. We offer a fine-grained assessment of the repeater by introducing a series of benchmarks. The benchmarks, which should be surpassed to claim a working repeater, are based on finite-energy considerations, thermal noise and the losses in the setup. In order to boost the performance of the studied repeaters we introduce two methods. The first one corresponds to the concept of a cut-off, which reduces the effect of decoherence during storage of a quantum state by introducing a maximum storage time. Secondly, we supplement the standard classical post-processing with an advantage distillation procedure. Using these methods, we find realistic parameters for which it is possible to achieve rates greater than each of the benchmarks, guiding the way towards implementing quantum repeaters.
Quantum communication relies on the existence of entanglement between two nodes of a network. Since, entanglement can only be produced using local quantum operations, distribution of parts of this entangled system between different nodes becomes necessary. However, due to the extremely fragile nature of entanglement and the presence of losses in the communication channel, the direct distribution of entanglement over large distances is nearly impossible. Quantum repeaters have been proposed to solve this problem. These enable one to establish long-range entanglement by dividing the link into smaller parts, creating entanglement between each part and connecting them up to form the full link. As researchers race to establish entanglement over larger and larger distances, it becomes essential to gauge the performance and robustness of the different protocols that go into designing a quantum repeater, before deploying them in real life. Present day noisy quantum computers are ideal for this task as they can emulate the noisy environment in a quantum communication channel and provide a benchmark for how the protocols will perform on real-life hardware. In this paper, we report the circuit-level implementation of the complete architecture of a Quantum Repeater. All the protocols of the repeater have been bench-marked on IBM Q, the worlds first publicly available cloud quantum computer. The results of our experiment provide a measure for the fidelity of entanglement current repeaters can establish. In addition, the repeater protocol provides a robust benchmark for the current state-of-the-art of quantum computing hardware.
Quantum networks will support long-distance quantum key distribution (QKD) and distributed quantum computation, and are an active area of both experimental and theoretical research. Here, we present an analysis of topologically complex networks of quantum repeaters composed of heterogeneous links. Quantum networks have fundamental behavioral differences from classical networks; the delicacy of quantum states makes a practical path selection algorithm imperative, but classical notions of resource utilization are not directly applicable, rendering known path selection mechanisms inadequate. To adapt Dijkstras algorithm for quantum repeater networks that generate entangled Bell pairs, we quantify the key differences and define a link cost metric, seconds per Bell pair of a particular fidelity, where a single Bell pair is the resource consumed to perform one quantum teleportation. Simulations that include both the physical interactions and the extensive classical messaging confirm that Dijkstras algorithm works well in a quantum context. Simulating about three hundred heterogeneous paths, comparing our path cost and the total work along the path gives a coefficient of determination of 0.88 or better.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا