Do you want to publish a course? Click here

Properties of a Gamma Ray Burst Host Galaxy at z ~ 5

102   0   0.0 ( 0 )
 Added by Antoinette Cowie
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe the properties of the host galaxy of the gamma-ray burst GRB060510B based on a spectrum of the burst afterglow obtained with the Gemini North 8m telescope. The galaxy lies at a redshift of z = 4.941 making it the fourth highest spectroscopically identified burst host. However, it is the second highest redshift galaxy for which the quality of the spectrum permits a detailed metallicity analysis. The neutral hydrogen column density has a logarithmic value of 21.0--21.2 cm^-2 and the weak metal lines of Ni, S and Fe show that the metallicity is in excess of a tenth of solar which is far above the metallicities in damped Lyman alpha absorbers at high redshift. The tightest constraint is from the Fe lines which place [Fe/H] in excess of -0.8. We argue that the results suggest that metallicity bias could be a serious problem with inferring star formation from the GRB population and consider how future higher quality measurements could be used to resolve this question.



rate research

Read More

60 - R.S. Priddey 2006
We present millimetre (mm) and submillimetre (submm) photometry of a sample of host galaxies of Gamma Ray Bursts (GRBs), obtained using the MAMBO2 and SCUBA bolometer arrays respectively. These observations were obtained as part of an ongoing project to investigate the status of GRBs as indicators of star formation. Our targets include two of the most unusual GRB host galaxies, selected as likely candidate submm galaxies: the extremely red (R-K approx 5) host of GRB 030115, and the extremely faint (R>29.5) host of GRB 020124. Neither of these galaxies is detected, but the deep upper limits for GRB 030115 impose constraints on its spectral energy distribution. As a framework for interpreting these data, and for predicting the results of forthcoming submm surveys of Swift-derived host samples, we model the expected flux and redshift distributions based on luminosity functions of both submm galaxies and GRBs, assuming a direct proportionality between the GRB rate density and the global star formation rate density. We derive the effects of possible sources of uncertainty in these assumptions, including an anticorrelation between GRB rate and the global average metallicity.
68 - Rhaana Starling 2007
We report on the results of a study to obtain limits on the absorbing columns to wards an initial sample of 10 long Gamma-Ray Bursts observed with BeppoSAX, using a new approach to SED fitting to nIR, optical and X-ray afterglow data, in count space and including the effects of metallicity. When testing MW, LMC and SMC extinction laws we find that SMC-like extinction provides the best fit in most cases. A MW-like ext inction curve is not preferred for any of these sources, largely since the 2175A bump, in principle detectable in all these afterglows, is not present in the data. We rule out an SMC-like gas-to-dust ratio or lower value for 4 of the hosts analysed here (assuming SMC metallicity and extinction law) whilst the remainder of the sample have too large an error to discriminate. We provide an accurate estimate of the line-of-sight extinction, improving upon the uncertainties for the majority of the extinction measurements made in previous studies of this sample.
135 - J. Elliott 2012
To answer questions on the start and duration of the epoch of reionisation, periods of galaxy mergers and properties of other cosmological encounters, the cosmic star formation history (CSFH), is of fundamental importance. Using the association of long gamma-ray bursts (LGRBs) with the death of massive stars and their ultra-luminous nature, the CSFH can be probed to higher redshifts than current conventional methods. Unfortunately, no consensus has been reached on the manner in which the LGRB rate (LGRBR) traces the CSFH, leaving many of the questions mentioned mostly unexplored by this method. Observations by the GRB NIR detector (GROND) over the past 4 years have, for the first time, acquired highly complete LGRB samples. Driven by these completeness levels and new evidence of LGRBs also occurring in more massive and metal rich galaxies than previously thought, the possible biases of the LGRBR-CSFH connection are investigated over a large range of galaxy properties. The CSFH is modelled using empirical fits to the galaxy mass function and galaxy star formation rates. Biasing the CSFH by metallicity cuts, mass range boundaries, and other unknown redshift dependencies, a LGRBR is generated and compared to the highly complete GROND sample. It is found that there is no strong preference for a metallicity cut or fixed galaxy mass boundaries and that there are no unknown redshift effects, in contrast to previous work which suggest values of Z/Z_sun~0.1-0.3. From the best-fit models, we predict that ~1.2% of the LGRB burst sample exists above z=6. The linear relationship between the LGRBR and the CSFH suggested by our results implies that redshift biases present in previous LGRB samples significantly affect the inferred dependencies of LGRBs on their host galaxy properties. Such biases can lead to, e.g., an interpretation of metallicity limitations and evolving LGRB luminosity functions.
We analyze cross-correlation functions between Gamma-Ray Burst (GRB) hosts and surrounding galaxies. We have used data obtained with the Very Large Telescope at Cerro Paranal (Chile), as well as public Hubble Space Telescope data. Our results indicate that Gamma-Ray Burst host galaxies do not reside in high galaxy density environments. Moreover, the host-galaxy cross-correlations show a relatively low amplitude. Our results are in agreement with the cross-correlation function between star-forming galaxies and surrounding objects in the HDF-N.
Measuring the star formation rate (SFR) at high redshift is crucial for understanding cosmic reionization and galaxy formation. Two common complementary approaches are Lyman-Break-Galaxy (LBG) surveys for large samples and Gamma-Ray-Burst (GRB) observations for sensitivity to SFR in small galaxies. The z>4 GRB-inferred SFR is higher than the LBG rate, but this difference is difficult to understand, as both methods rely on several modeling assumptions. Using a physically motivated galaxy luminosity function model, with star formation in dark-matter halos with virial temperature Tvir>2e4 K (M_DM>2e8 M_sun), we show that GRB and LBG-derived SFRs are consistent if GRBs extend to faint galaxies (M_AB<-11). To test star formation below the detection limit L_lim~0.05L^*_{z=3} of LBG surveys, we propose to measure the fraction f_det(L>L_lim,z) of GRB hosts with L>L_lim. This fraction quantifies the missing star formation fraction in LBG surveys, constraining the mass-suppression scale for galaxy formation, with weak dependence on modeling assumptions. Because f_det(L>L_lim,z) corresponds to the ratio of star formation rates derived from LBG and GRB surveys, if these estimators are unbiased, measuring f_det(L>L_lim,z) also constrains the redshift evolution of the GRB production rate per unit mass of star formation. Our analysis predicts significant success for GRB host detections at z~5 with f_det(L>L_lim,z)~0.4, but rarer detections at z>6. By analyzing the upper limits on host-galaxy luminosities of six z>5 GRBs from literature data, we infer that galaxies with M_AB>-15 were present at z>5 at 95% confidence, demonstrating the key role played by very faint galaxies during reionization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا