Do you want to publish a course? Click here

Contracted ideals and the Groebner fan of the rational normal curve

122   0   0.0 ( 0 )
 Added by Conca Aldo
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

The paper has two goals: the study the associated graded ring of contracted homogeneous ideals in $K[x,y]$ and the study of the Groebner fan of the ideal $P$ of the rational normal curve in ${bf P}^d$. These two problems are, quite surprisingly, very tightly related. We completely classify the contracted ideals with a Cohen-Macaulay associated graded rings in terms of the numerical invariants arising from Zariskis factorization. We determine explicitly all the initial ideals (monomial or not) of $P$ that are Cohen-Macaulay.



rate research

Read More

We describe the universal Groebner basis of the ideal of maximal minors and the ideal of $2$-minors of a multigraded matrix of linear forms. Our results imply that the ideals are radical and provide bounds on the regularity. In particular, the ideals of maximal minors have linear resolutions. Our main theoretical contribution consists of introducing two new classes of ideals named after Cartwright and Sturmfels, and proving that they are closed under multigraded hyperplane sections. The gins of the ideals that we study enjoy special properties.
In the context of modeling biological systems, it is of interest to generate ideals of points with a unique reduced Groebner basis, and the first main goal of this paper is to identify classes of ideals in polynomial rings which share this property. Moreover, we provide methodologies for constructing such ideals. We then relax the condition of uniqueness. The second and most relevant topic discussed here is to consider and identify pairs of ideals with the same number of reduced Groebner bases, that is, with the same cardinality of their associated Groebner fan.
Let C be a uniform clutter and let I=I(C) be its edge ideal. We prove that if C satisfies the packing property (resp. max-flow min-cut property), then there is a uniform Cohen-Macaulay clutter C1 satisfying the packing property (resp. max-flow min-cut property) such that C is a minor of C1. For arbitrary edge ideals of clutters we prove that the normality property is closed under parallelizations. Then we show some applications to edge ideals and clutters which are related to a conjecture of Conforti and Cornuejols and to max-flow min-cut problems.
We present an algorithm for computing Groebner bases of vanishing ideals of points that is optimized for the case when the number of points in the associated variety is less than the number of indeterminates. The algorithm first identifies a set of essential variables, which reduces the time complexity with respect to the number of indeterminates, and then uses PLU decompositions to reduce the time complexity with respect to the number of points. This gives a theoretical upper bound for its time complexity that is an order of magnitude lower than the known one for the standard Buchberger-Moeller algorithm if the number of indeterminates is much larger than the number of points. Comparison of implementations of our algorithm and the standard Buchberger-Moeller algorithm in Macaulay 2 confirm the theoretically predicted speedup. This work is motivated by recent applications of Groebner bases to the problem of network reconstruction in molecular biology.
215 - James Lewis 2020
We investigate the rational powers of ideals. We find that in the case of monomial ideals, the canonical indexing leads to a characterization of the rational powers yielding that symbolic powers of squarefree monomial ideals are indeed rational powers themselves. Using the connection with symbolic powers techniques, we use splittings to show the convergence of depths and normalized Castelnuovo-Mumford regularities. We show the convergence of Stanley depths for rational powers, and as a consequence of this we show the before-now unknown convergence of Stanley depths of integral closure powers. In addition, we show the finiteness of asymptotic associated primes, and we find that the normalized lengths of local cohomology modules converge for rational powers, and hence for symbolic powers of squarefree monomial ideals.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا