Linear balls and the multiplicity conjecture


Abstract in English

A linear ball is a simplicial complex whose geometric realization is homeomorphic to a ball and whose Stanley--Reisner ring has a linear resolution. It turns out that the Stanley--Reisner ring of the sphere which is the boundary complex of a linear ball satisfies the multiplicity conjecture. A class of shellable spheres arising naturally from commutative algebra whose Stanley--Reisner rings satisfy the multiplicity conjecture will be presented.

Download