We study the high density region of QCD within an effective model obtained in the frame of the hopping parameter expansion and choosing Polyakov type of loops as the main dynamical variables representing the fermionic matter. To get a first idea of the phase structure, the model is analyzed in strong coupling expansion and using a mean field approximation. In numerical simulations, the model still shows the so-called sign problem, a difficulty peculiar to non-zero chemical potential, but it permits the development of algorithms which ensure a good overlap of the Monte Carlo ensemble with the true one. We review the main features of the model and present calculations concerning the dependence of various observables on the chemical potential and on the temperature, in particular of the charge density and the diquark susceptibility, which may be used to characterize the various phases expected at high baryonic density. We obtain in this way information about the phase structure of the model and the corresponding phase transitions and cross over regions, which can be considered as hints for the behaviour of non-zero density QCD.