Do you want to publish a course? Click here

Chiral Anomaly Beyond Lorentz Invariance

109   0   0.0 ( 0 )
 Added by J. Gamboa
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

The chiral anomaly in the context of an extended standard model with minimal Lorentz invariance violation is studied. Taking into account bounds from measurements of the speed of light, we argue that the chiral anomaly and its consequences are general results valid even beyond the relativistic symmetry.



rate research

Read More

We propose a way to recover Lorentz invariance of the perturbative S matrix in the Discrete Light-Cone Quantization (DLCQ) in the continuum limit without spoiling the trivial vacuum.
Basis tensor gauge theory (BTGT) is a vierbein analog reformulation of ordinary gauge theories in which the vierbein field describes the Wilson line. After a brief review of the BTGT, we clarify the Lorentz group representation properties associated with the variables used for its quantization. In particular, we show that starting from an SO(1,3) representation satisfying the Lorentz-invariant U(1,3) matrix constraints, BTGT introduces a Lorentz frame choice to pick the Abelian group manifold generated by the Cartan subalgebra of u(1,3) for the convenience of quantization even though the theory is frame independent. This freedom to choose a frame can be viewed as an additional symmetry of BTGT that was not emphasized before. We then show how an $S_4$ permutation symmetry and a parity symmetry of frame fields natural in BTGT can be used to construct renormalizable gauge theories that introduce frame dependent fields but remain frame independent perturbatively without any explicit reference to the usual gauge field.
In this paper we consider features of graviton scattering in Matrix theory compactified on a 2-torus. The features which interest us can only be determined by nonperturbative effects in the corresponding 2+1 dimensional super Yang Mills theory. We show that the superconformal symmetry of strongly coupled Super Yang Mills Theory in 2+1 dimensions almost determines low energy, large impact parameter ten dimensional graviton scattering at zero longitudinal momentum in the Matrix model of IIB string theory. We then show that amplitudes involving arbitrary transverse momentum transfer are governed by instanton processes similar to the Polchinski Pouliot process. Finally we consider the influence of instantons on a conjectured nonrenormalization theorem. This theorem is violated by instanton processes. Far from being a problem, this fact is seen to be crucial to the consistency of the IIB interpretation. We suggest that the SO(8) invariance of strongly coupled SYM theory may lead to a proof of eleven dimensional Lorentz invariance.
Lorentz invariance is broken for the non-Abelian monopoles. Here we will consider the case of t Hooft-Polyakov monopole and show that the Lorentz invariance of its field will be restored using Dirac quantization.
We calculate twist-3 parton ditribution functions (PDFs) using cut and uncut diagrams. Uncut diagrams lead to a Dirac delta function term. No such term appears when cut diagrams are used. We show that a $delta(x)$ is necessary to satisfy the Lorentz invariance relations of twist-3 PDFs, except for the Burkhardt-Cottingham sum rule in QCD.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا