Brownian ratchets driven by asymmetric nucleation of hydrolysis waves


Abstract in English

We propose a stochastic process wherein molecular transport is mediated by asymmetric nucleation of domains on a one-dimensional substrate. Track-driven mechanisms of molecular transport arise in biophysical applications such as Holliday junction positioning and collagenase processivity. In contrast to molecular motors that hydrolyze nucleotide triphosphates and undergo a local molecular conformational change, we show that asymmetric nucleation of hydrolysis waves on a track can also result in directed motion of an attached particle. Asymmetrically cooperative kinetics between ``hydrolyzed and ``unhydrolyzed states on each lattice site generate moving domain walls that push a particle sitting on the track. We use a novel fluctuating-frame, finite-segment mean field theory to accurately compute steady-state velocities of the driven particle and to discover parameter regimes which yield maximal domain wall flux, leading to optimal particle drift.

Download