Do you want to publish a course? Click here

Brownian ratchets driven by asymmetric nucleation of hydrolysis waves

216   0   0.0 ( 0 )
 Added by Tom Chou
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a stochastic process wherein molecular transport is mediated by asymmetric nucleation of domains on a one-dimensional substrate. Track-driven mechanisms of molecular transport arise in biophysical applications such as Holliday junction positioning and collagenase processivity. In contrast to molecular motors that hydrolyze nucleotide triphosphates and undergo a local molecular conformational change, we show that asymmetric nucleation of hydrolysis waves on a track can also result in directed motion of an attached particle. Asymmetrically cooperative kinetics between ``hydrolyzed and ``unhydrolyzed states on each lattice site generate moving domain walls that push a particle sitting on the track. We use a novel fluctuating-frame, finite-segment mean field theory to accurately compute steady-state velocities of the driven particle and to discover parameter regimes which yield maximal domain wall flux, leading to optimal particle drift.



rate research

Read More

A phase transformation in a metastable phase can be affected when it is subjected to a high intensity ultrasound wave. In this study we determined the effect of oscillation in pressure and temperature on a phase transformation using the Gibbs droplet model in a generic format. The developed model is valid for both equilibrium and non-equilibrium clusters formed through a stationary or non-stationary process. We validated the underlying model by comparing the predicted kinetics of water droplet formation from the gas phase against experimental data in the absence of ultrasound. Our results demonstrated better agreement with experimental data in comparison with classical nucleation theory. Then, we determined the thermodynamics and kinetics of nucleation and the early stage of growth of clusters in an isothermal sonocrystallisation process. This new contribution shows that the effect of pressure on the kinetics of nucleation is cluster size-dependent in contrast to classical nucleation theory.
77 - Dominik Lips , Artem Ryabov , 2019
Single-file Brownian motion in periodic structures is an important process in nature and technology, which becomes increasingly amenable for experimental investigation under controlled conditions. To explore and understand generic features of this motion, the Brownian asymmetric simple exclusion process (BASEP) was recently introduced. The BASEP refers to diffusion models, where hard spheres are driven by a constant drag force through a periodic potential. Here, we derive general properties of the rich collective dynamics in the BASEP. Average currents in the steady state change dramatically with the particle size and density. For an open system coupled to particle reservoirs, extremal current principles predict various nonequilibrium phases, which we verify by Brownian dynamics simulations. For general pair interactions we discuss connections to single-file transport by traveling-wave potentials and prove the impossibility of current reversals in systems driven by a constant drag and by traveling waves.
184 - F. Renzoni 2011
Brownian motors, or ratchets, are devices which rectify Brownian motion, i.e. they can generate a current of particles out of unbiased fluctuations. The ratchet effect is a very general phenomenon which applies to a wide range of physical systems, and indeed ratchets have been realized with a variety of solid state devices, with optical trap setups as well as with synthetic molecules and granular gases. The present article reviews recent experimental realizations of ac driven ratchets with cold atoms in driven optical lattices. This is quite an unusual system for a Brownian motor as there is no a real thermal bath, and both the periodic potential for the atoms and the fluctuations are determined by laser fields. Such a system allowed us to realize experimentally rocking and gating ratchets, and to precisely investigate the relationship between symmetry and transport in these ratchets, both for the case of periodic and quasiperiodic driving.
Single-file transport in pore-like structures constitute an important topic for both theory and experiment. For hardcore interacting particles, a good understanding of the collective dynamics has been achieved recently. Here we study how softness in the particle interaction affects the emergent transport behavior. To this end, we investigate driven Brownian motion of particles in a periodic potential. The particles interact via a repulsive softcore potential with a shape corresponding to a smoothed rectangular barrier. This shape allows us to elucidate effects of mutual particle penetration and particle crossing in a controlled manner. We find that even weak deviations from the hardcore case can have a strong impact on the particle current. Despite of this fact, the knowledge about the transport in a corresponding hardcore system is shown to be useful to describe and interpret our findings for the softcore case. This is achieved by assigning a thermodynamic effective size to the particles based on the equilibrium density functional of hard spheres.
138 - Dominik Lips , Artem Ryabov , 2018
We study the driven Brownian motion of hard rods in a one-dimensional cosine potential with an amplitude large compared to the thermal energy. In a closed system, we find surprising features of the steady-state current in dependence of the particle density. The form of the current-density relation changes greatly with the particle size and can exhibit both a local maximum and minimum. The changes are caused by an interplay of a barrier reduction, blocking and exchange symmetry effect. The latter leads to a current equal to that of non-interacting particles for a particle size commensurate with the period length of the cosine potential. For an open system coupled to particle reservoirs, we predict five different phases of non-equilibrium steady states to occur. Our results show that the particle size can be of crucial importance for non-equilibrium phase transitions in driven systems. Possible experiments for demonstrating our findings are pointed out.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا