The tripartite separability of density matrices of graphs


Abstract in English

The density matrix of a graph is the combinatorial laplacian matrix of a graph normalized to have unit trace. In this paper we generalize the entanglement properties of mixed density matrices from combinatorial laplacian matrices of graphs discussed in Braunstein {it et al.} Annals of Combinatorics, {bf 10}(2006)291 to tripartite states. Then we proved that the degree condition defined in Braunstein {it et al.} Phys. Rev. A {bf 73}, (2006)012320 is sufficient and necessary for the tripartite separability of the density matrix of a nearest point graph.

Download