We propose a new method to produce self- and cross-Kerr photonic nonlinearities, using light-induced Stark shifts due to the interaction of a cavity mode with atoms. The proposed experimental set-up is considerably simpler than in previous approaches, while the strength of the nonlinearity obtained with a single atom is the same as in the setting based on electromagnetically induced transparency. Furthermore our scheme can be applied to engineer effective photonic nonlinear interactions whose strength increases with the number of atoms coupled to the cavity mode, leading to photon-photon interactions several orders of magnitude larger than previously considered possible.