Do you want to publish a course? Click here

Spin Diode Based on Fe/MgO Double Tunnel Junction

95   0   0.0 ( 0 )
 Added by Adrian Iovan
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate a spin diode consisting of a semiconductor free nano-scale Fe/MgO-based double tunnel junction. The device exhibits a near perfect spin-valve effect combined with a strong diode effect. The mechanism consistent with our data is resonant tunneling through discrete states in the middle ferromagnetic layer sandwiched by tunnel barriers of different spin-dependent transparency. The observed magneto-resistance is record high, ~4000%, essentially making the structure an on/off spin-switch. This, combined with the strong diode effect, ~100, offers a new device that should be promising for such technologies as magnetic random access memory and re-programmable logic.



rate research

Read More

We propose a low-temperature thermal rectifier consisting of a chain of three tunnel-coupled normal metal electrodes. We show that a large heat rectification is achievable if the thermal symmetry of the structure is broken and the central island can release energy to the phonon bath. The performance of the device is theoretically analyzed and, under the appropriate conditions, temperature differences up to $sim$ 200 mK between the forward and reverse thermal bias configurations are obtained below 1 K, corresponding to a rectification ratio $mathcal{R} sim$ 2000. The simplicity intrinsic to its design joined with the insensitivity to magnetic fields make our device potentially attractive as a fundamental building block in solid-state thermal nanocircuits and in general-purpose cryogenic electronic applications requiring energy management.
386 - J. Peralta-Ramos , , A. M. Llois 2008
In this contribution, we calculate in a self-consistent way the ballistic transmission as a function of energy of one Fe/MgO (001) single-barrier and one double-barrier tunnel junction, relating them to their electronic structure. The transmission spectra of each kind of junction is calculated at different applied bias voltages. We focus on the impact that bias has on the resonant tunneling mediated by surface and quantum well states. The calculations are done in the coherent regime, using a combination of density functional theory and non-equilibrium Greens functions, as implemented in the {it ab initio} code {it SMEAGOL}. We conclude that, for both kinds of junction, the transmission functions depend on the applied bias voltage. In the single-barrier junction, transport mediated by resonant Fe minority surface states is rapidly destroyed by bias. In the double-barrier junction, the appearance of resonant tunneling through majority quantum well states is strongly affected by bias.
66 - P. K. Muduli 2016
Spin-polarized quasiparticles can be easily created during spin-filtering through a ferromagnetic insulator (FI) in contact with a superconductor due to pair breaking effects at the interface. A combination FI-N-FI sandwiched between two superconductors can be used to create and analyze such spin-polarized quasiparticles through their nonequilibrium accumulation in the middle metallic (N) layer. We report spin-polarized quasiparticle regulation in a double spin-filter tunnel junction in the configuration NbN-GdN1-Ti-GdN2-NbN. The middle Ti layer provides magnetic decoupling between two ferromagnetic GdN and a place for nonequilibrium quasiparticle accumulation. The two GdN(1,2) layers were deposited under different conditions to introduce coercive contrast. The quasiparticle tunneling spectra has been measured at different temperatures to understand the tunneling mechanism in these double spin-filter junctions. The conductance spectra were found to be comparable to an asymmetric SINIS-type tunnel junction. A hysteretic R-H loop with higher resistance for the antiparallel configuration compared to parallel state was observed asserting the spin-polarized nature of quasiparticles. The hysteresis in the R-H loop was found to disappear for sub-gap bias current. This difference can be understood by considering suppression of the interlayer coupling due to nonequilibrium spin-polarized quasiparticle accumulation in the Ti layer.
We investigate the spin-dependent Seebeck coefficient and the tunneling magneto thermopower of CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJ) in the presence of thermal gradients across the MTJ. Thermal gradients are generated by an electric heater on top of the nanopillars. The thermo power voltage across the MTJ is found to scale linearly with the heating power and reveals similar field dependence as the tunnel magnetoresistance. The amplitude of the thermal gradient is derived from calibration measurements in combination with finite element simulations of the heat flux. Based on this, large spin-dependent Seebeck coefficients of the order of (240 pm 110) muV/K are derived. From additional measurements on MTJs after dielectric breakdown, a tunneling magneto thermopower up to 90% can be derived for 1.5 nm MgO based MTJ nanopillars.
107 - Lili Lang , Yujie Jiang , Fei Lu 2019
We investigated the low temperature performance of CoFeB/MgO based perpendicular magnetic tunnel junctions (pMTJs) by characterizing their quasi-static switching voltage, high speed pulse write error rate and endurance down to 9 K. pMTJ devices exhibited high magnetoresistance (>120%) and reliable (error rate<10-4) bi-directional switching with 2 to 200 ns voltage pulses. The endurance of the devices at 9 K surpassed that at 300 K by three orders of magnitude under the same write conditions, functioning for more than 10^12 cycles with 10 ns write pulses. The critical switching voltage at 9 K was observed to increase by 33% to 93%, depending on pulse duration, compared to that at 350 K. Ferromagnetic resonance and magnetization measurements on blanket pMTJ film stacks suggest that the increased switching voltage is associated with an increase in effective magnetic anisotropy and magnetization of free layer with decreasing temperature. Our work demonstrates that CoFeB/MgO based pMTJs have great potential to enable cryogenic MRAM and that their low temperature magnetization and effective magnetic anisotropy can be further optimized to lower operating power and improve endurance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا