Do you want to publish a course? Click here

Normalization of twisted Alexander invariants

151   0   0.0 ( 0 )
 Added by Takahiro Kitayama
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Twisted Alexander invariants of knots are well-defined up to multiplication of units. We get rid of this multiplicative ambiguity via a combinatorial method and define normalized twisted Alexander invariants. We then show that the invariants coincide with sign-determined Reidemeister torsion in a normalized setting, and refine the duality theorem. We further obtain necessary conditions on the invariants for a knot to be fibered, and study behavior of the highest degrees of the invariants.



rate research

Read More

55 - Takefumi Nosaka 2020
Given a homomorphism from a link group to a group, we introduce a $K_1$-class in another way, which is a generalization of the 1-variable Alexander polynomial. We compare the $K_1$-class with $K_1$-classes in cite{Nos} and with Reidemeister torsions. As a corollary, we show a relation to Reidemeister torsions of finite cyclic covering spaces, and show reciprocity in some senses.
111 - Iva Halacheva 2016
We study generalizations of a classical link invariant -- the multivariable Alexander polynomial -- to tangles. The starting point is Archibalds tMVA invariant for virtual tangles which lives in the setting of circuit algebras, and whose target space has dimension that is exponential in the number of strands. Using the Hodge star map and restricting to tangles without closed components, we define a reduction of the tMVA to an invariant rMVA which is valued in matrices with Laurent polynomial entries, and so has a much more compact target space. We show the rMVA has the structure of a metamonoid morphism and is further equivalent to a tangle invariant defined by Bar-Natan. This invariant also reduces to the Gassner representation on braids and has a partially defined trace operation for closing open strands of a tangle.
In this paper we give an explicit formula for the twisted Alexander polynomial of any torus link and show that it is a locally constant function on the $SL(2, mathbb C)$-character variety. We also discuss similar things for the higher dimensional twisted Alexander polynomial and the Reidemeister torsion.
In this paper we apply the twisted Alexander polynomial to study the fibering and genus detecting problems for oriented links. In particular we generalize a conjecture of Dunfield, Friedl and Jackson on the torsion polynomial of hyperbolic knots to hyperbolic links, and confirm it for an infinite family of hyperbolic 2-bridge links. Moreover we consider a similar problem for parabolic representations of 2-bridge link groups.
In this paper we show that the twisted Alexander polynomial associated to a parabolic representation determines fiberedness and genus of a wide class of 2-bridge knots. As a corollary we give an affirmative answer to a conjecture of Dunfield, Friedl and Jackson for infinitely many hyperbolic knots.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا