A direct experimental limit on neutron -- mirror neutron oscillations


Abstract in English

In case a mirror world with a copy of our ordinary particle spectrum would exist, the neutron n and its degenerate partner, the mirror neutron ${rm n}$, could potentially mix and undergo ${rm nn}$ oscillations. The interaction of an ordinary magnetic field with the ordinary neutron would lift the degeneracy between the mirror partners, diminish the ${rm n}$-amplitude in the n-wavefunction and, thus, suppress its observability. We report an experimental comparison of ultracold neutron storage in a trap with and without superimposed magnetic field. No influence of the magnetic field is found and, assuming negligible mirror magnetic fields, a limit on the oscillation time $tau_{rm nn} > 103$ s (95% C.L.) is derived.

Download