Do you want to publish a course? Click here

Tracing mixing in stars: new beryllium observations of the open clusters NGC 2516, Hyades, and M67

255   0   0.0 ( 0 )
 Added by Sofia Randich
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Determinations of beryllium abundance in stars, together with lithium, provide a key tool to investigate the so far poorly understood extra-mixing processes at work in stellar interiors. We measured Be in three open clusters,complementing existing Be surveys, and aiming at gathering a more complete empirical scenario of the evolution of Be as a function of stellar age and temperature. Specifically, we analyzed VLT/UVES spectra of members of NGC 2516, the Hyades, and M 67 to determine their Be and Li abundances. In the first two clusters we focused on stars cooler than 5400 K, while the M 67 sample includes stars warmer than 6150 K, as well as two subgiants and two blue stragglers. We also computed the evolution of Be for a 0.9 Mo star based on standard evolutionary models. We find different emprical behaviours for stars in different temperature bins and ages. Stars warmer than 6150 K show Be depletion and follow a Be vs. Li correlation while Be is undepleted in stars in the ~6150-5600 K range. NGC 2516 members cooler than 5400 K have not depleted any Be, but older Hyades of similar temperature do show some depletion. Be is severely depleted in the subgiants and blue stragglers. The results for warm stars are in agreement with previous studies, supporting the hypothesis that mixing in this temperature regime is driven by rotation. The same holds for the two subgiants that have evolved from the Li gap. This mechanism is instead not the dominant one for solar-type stars. We show that Be depletion of cool Hyades cannot simply be explained by the effect of increasing depth of the convective zone. Finally, the different Be content of the two blue stragglers suggests that they have formed by two different processes (i.e., collisions vs. binary merging).



rate research

Read More

Mixing mechanisms bring the Li from the base of the convective zone to deeper and warmer layers where it is destroyed. These mechanisms are investigated by comparing observations of Li abundances in stellar atmospheres to models of stellar evolution. Observations in open cluster are especially suitable for this comparison, since their age and metallicity are homogeneous among their members and better determined than in field stars. In this work, we compare the evolution of Li abundances in three different clusters: the Hyades, NGC752, and M67. Our models are calculated with microscopic diffusion and transport of chemicals by meridional circulation, and calibrated on the Sun. These comparisons allow us to follow the evolution of Li abundance as a function of stellar mass in each cluster and as a function of the age by comparing this evolution in each cluster. We evaluate the efficiency of the mixing mechanisms used in the models, and we try to identify the lacking mechanisms to reproduce the observed evolution of Li abundance.
Lithium abundances in open clusters provide an effective way of probing mixing processes in the interior of solar-type stars and convection is not the only mixing mechanism at work. To understand which mixing mechanisms are occurring in low-mass stars, we test non-standard models, which were calibrated using the Sun, with observations of three open clusters of different ages, the Hyades, NGC 752, and M67. We collected all available data, and for the open cluster NGC 752, we redetermine the equivalent widths and the lithium abundances. Two sets of evolutionary models were computed, one grid of only standard models with microscopic diffusion and one grid with rotation-induced mixing, at metallicity [Fe/H] = 0.13, 0.0, and 0.01 dex, respectively, using the Toulouse-Geneva evolution code. We compare observations with models in a color-magnitude diagram for each cluster to infer a cluster age and a stellar mass for each cluster member. Then, for each cluster we analyze the lithium abundance of each star as a function of mass. The data for the open clusters Hyades, NGC 752, and M67, are compatible with lithium abundance being a function of both age and mass for stars in these clusters. Our models with meridional circulation qualitatively reproduce the general trend of lithium abundance evolution as a function of stellar mass in all three clusters. This study points out the importance of mass dependence in the evolution of lithium abundance as a function of age. Comparison between models with and without rotation-induced mixing shows that the inclusion of meridional circulation is essential to account for lithium depletion in low-mass stars. However, our results suggest that other mechanisms should be included to explain the Li-dip and the lithium dispersion in low-mass stars.
We analyze ultraviolet (~1500 A) images of the old open clusters M67, NGC 188, and NGC 6791 obtained with Ultraviolet Imaging Telescope (UIT) during the second flight of the Astro observatory in March 1995. Twenty stars are detected on the UIT image of M67, including 11 blue stragglers, seven white dwarf candidates, and the yellow giant -- white dwarf binary S1040. The ultraviolet photometry of the blue stragglers F90 (S975) and F131 (S1082) suggests that these stars have hot subluminous companions. We present a semi-empirical integrated ultraviolet spectrum of M67, and show that the blue stragglers dominate the integrated spectrum at wavelengths shorter than 2600 A. The number of white dwarfs in M67 is roughly consistent with the number expected from white dwarf cooling models. Eight candidate sdB/sdO stars are detected in NGC 6791, and two are detected in NGC 188. The luminosity range 1.10 < log L/Lsun < 1.27, derived from the ultraviolet photometry of the six sdB candidates, is consistent with theoretical models of metal-rich hot horizontal branch (HB) stars. The fraction of hot HB stars in both NGC 6791 and NGC 188 is about 30%, implying that the integrated spectra of both clusters should show a UV turnup at least as strong as that observed in any elliptical galaxy.
Flares, energetic eruptions on the surfaces of stars, are an unmistakable manifestation of magnetically driven emission. Their occurrence rates and energy distributions trace stellar characteristics such as mass and age. But before flares can be used to constrain stellar properties, the flaring-age-mass relation requires proper calibration. This work sets out to quantify flaring activity of independently age-dated main sequence stars for a broad range of spectral types using optical light curves obtained by the Kepler satellite. Drawing from the complete K2 archive, we searched 3435 $sim 80$ day long light curves of 2111 open cluster members for flares using the open-source software packages K2SC to remove instrumental and astrophysical variability from K2 light curves, and AltaiPony to search and characterize the flare candidates. We confirmed a total of 3844 flares on high probability open cluster members with ages from zero age main sequence (Pleiades) to 3.6 Gyr (M67). We extended the mass range probed in the first study of this series to span from Sun-like stars to mid-M dwarfs. We added the Hyades (690 Myr) to the sample as a comparison cluster to Praesepe (750 Myr), the 2.6 Gyr old Ruprecht 147, and several hundred light curves from the late K2 Campaigns in the remaining clusters. The flare energy distribution was similar in the entire parameter space, following a power law relation with exponent $alphaapprox 1.84-2.39$. The flaring rates declined with age, and declined faster for higher mass stars. We found evidence that a rapid decline in flaring activity occurred in M1-M2 dwarfs around Hyades/Praesepe age, when these stars spun down to rotation periods of about 10 days, while higher mass stars had already transitioned to lower flaring rates, and lower mass stars still resided in the saturated activity regime. (abridged)
Rapidly rotating, low-mass members of eclipsing binary systems have measured radii significantly larger than predicted by standard models. It has been proposed that magnetic activity is responsible for radius inflation. By estimating the radii of low-mass stars in three young clusters (NGC 2264, NGC 2547, NGC 2516, with ages of 5, 35 and 140 Myr respectively), we aim to establish whether similar radius inflation is seen in single, magnetically active stars. We use radial velocities from the Gaia-ESO Survey (GES) and published photometry to establish cluster membership and combine GES measurements of vsini with published rotation periods to estimate average radii for groups of fast-rotating cluster members as a function of their luminosity and age. The average radii are compared with the predictions of both standard evolutionary models and variants that include magnetic inhibition of convection and starspots. At a given luminosity, the stellar radii in NGC 2516 and NGC 2547 are larger than predicted by standard evolutionary models at the ages of these clusters. The discrepancy is least pronounced and not significant ~10 percent) in ZAMS stars with radiative cores, but more significant in lower-mass, fully convective pre main-sequence cluster members, reaching 30+/-10 percent. The uncertain age and distance of NGC 2264 preclude a reliable determination of any discrepancy for its members. The median radii we have estimated for low-mass fully convective stars in the older clusters are inconsistent (at the 2-3 sigma level) with non-magnetic evolutionary models and more consistent with models that incorporate the effects of magnetic fields or dark starspots. The available models suggest this requires either surface magnetic fields exceeding 2.5 kG, spots that block about 30 per cent of the photospheric flux, or a more moderate combination of both. [Abridged]
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا