Do you want to publish a course? Click here

Toroidal Magnetic Fields in Type II Superconducting Neutron Stars

121   0   0.0 ( 0 )
 Added by Taner Akgun
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We determine constraints on the form of axisymmetric toroidal magnetic fields dictated by hydrostatic balance in a type II superconducting neutron star with a barotropic equation of state. Using Lagrangian perturbation theory, we find the quadrupolar distortions due to such fields for various models of neutron stars with type II superconducting and normal regions. We find that the star becomes prolate and can be sufficiently distorted to display precession with a period of the order of years. We also study the stability of such fields using an energy principle, which allows us to extend the stability criteria established by R. J. Tayler for normal conductors to more general media with magnetic free energy that depends on density and magnetic induction, such as type II superconductors. We also derive the growth rate and instability conditions for a specific instability of type II superconductors, first discussed by P. Muzikar, C. J. Pethick and P. H. Roberts, using a local analysis based on perturbations around a uniform background.



rate research

Read More

308 - Dany Page , 2007
We present models of temperature distribution in the crust of a neutron star in the presence of a strong toroidal component superposed to the poloidal component of the magnetic field. The presence of such a toroidal field hinders heat flow toward the surface in a large part of the crust. As a result, the neutron star surface presents two warm regions surrounded by extended cold regions and has a thermal luminosity much lower than in the case the magnetic field is purely poloidal. We apply these models to calculate the thermal evolution of such neutron stars and show that the lowered photon luminosity naturally extends their life-time as detectable thermal X-ray sources.
Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.
80 - Curt Cutler 2002
We show that NSs with large toroidal B-fields tend naturally to evolve into potent gravitational-wave (gw) emitters. The toroidal field B_t tends to distort the NS into a prolate shape, and this magnetic distortion can easily dominate over the oblateness ``frozen into the NS crust. An elastic NS with frozen-in B-field of this magnitude is clearly secularly unstable: the wobble angle between the NSs angular momentum J^i and the stars magnetic axis n_B^i grow on a dissipation timescale until J^i and n_B^i are orthogonal. This final orientation is clearly the optimal one for gravitational-wave (gw) emission. The basic cause of the instability is quite general, so we conjecture that the same final state is reached for a realistic NS. Assuming this, we show that for LMXBs with B_t of order 10^{13}G, the spindown from gws is sufficient to balance the accretion torque--supporting a suggestion by Bildsten. The spindown rates of most millisecond pulsars can also be attributed to gw emission sourced by toroidal B-fields, and both these sources could be observed by LIGO II. While the first-year spindown of a newborn NS is most likely dominated by em processes, reasonable values of B_t and the (external) dipolar field B_d can lead to detectable levels of gw emission, for a newborn NS in our own galaxy.
We present solutions for Hall equilibria applicable to neutron star crusts. Such magnetic configurations satisfy a Grad-Shafranov-type equation, which is solved analytically and numerically. The solutions presented cover a variety of configurations, from purely poloidal fields connected to an external dipole to poloidal-toroidal fields connected to an external vacuum field, or fully confined within the star. We find that a dipole external field should be supported by a uniformly rotating electron fluid. The energy of the toroidal magnetic field is generally found to be a few percent of the total magnetic field energy for the fields with an external component. We discuss the evolution due to Ohmic dissipation which leads to slowing down of the electron fluid. We also find that the transition from an MHD equilibrium to a state governed by Hall effect, generates spontaneously an additional toroidal field in regions where the electron fraction changes.
We explore the thermal and magnetic-field structure of a late-stage proto-neutron star. We find the dominant contribution to the entropy in different regions of the star, from which we build a simplified equation of state for the hot neutron star. With this, we numerically solve the stellar equilibrium equations to find a range of models, including magnetic fields and rotation up to Keplerian velocity. We approximate the equation of state as a barotrope, and discuss the validity of this assumption. For fixed magnetic-field strength, the induced ellipticity increases with temperature; we give quantitative formulae for this. The Keplerian velocity is considerably lower for hotter stars, which may set a de-facto maximum rotation rate for non-recycled NSs well below 1 kHz. Magnetic fields stronger than around $10^{14}$ G have qualitatively similar equilibrium states in both hot and cold neutron stars, with large-scale simple structure and the poloidal field component dominating over the toroidal one; we argue this result may be universal. We show that truncating magnetic-field solutions at low multipoles leads to serious inaccuracies, especially for models with rapid rotation or a strong toroidal-field component.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا