Do you want to publish a course? Click here

Double Sided Watermark Embedding and Detection with Perceptual Analysis

262   0   0.0 ( 0 )
 Added by Jidong Zhong
 Publication date 2007
and research's language is English




Ask ChatGPT about the research

In our previous work, we introduced a double-sided technique that utilizes but not reject the host interference. Due to its nice property of utilizing but not rejecting the host interference, it has a big advantage over the host interference schemes in that the perceptual analysis can be easily implemented for our scheme to achieve the locally bounded maximum embedding strength. Thus, in this work, we detail how to implement the perceptual analysis in our double-sided schemes since the perceptual analysis is very important for improving the fidelity of watermarked contents. Through the extensive performance comparisons, we can further validate the performance advantage of our double-sided schemes.



rate research

Read More

105 - Jidong Zhong 2007
The embedder and the detector (or decoder) are the two most important components of the digital watermarking systems. Thus in this work, we discuss how to design a better embedder and detector (or decoder). I first give a summary of the prospective applications of watermarking technology and major watermarking schemes in the literature. My review on the literature closely centers upon how the side information is exploited at both embedders and detectors. In Chapter 3, I explore the optimum detector or decoder according to a particular probability distribution of the host signals. We found that the performance of both multiplicative and additive spread spectrum schemes depends on the shape parameter of the host signals. For spread spectrum schemes, the performance of the detector or the decoder is reduced by the host interference. Thus I present a new host-interference rejection technique for the multiplicative spread spectrum schemes. Its embedding rule is tailored to the optimum detection or decoding rule. Though the host interference rejection schemes enjoy a big performance gain over the traditional spread spectrum schemes, their drawbacks that it is difficult for them to be implemented with the perceptual analysis to achieve the maximum allowable embedding level discourage their use in real scenarios. Thus, in the last chapters of this work, I introduce a double-sided technique to tackle this drawback. It differs from the host interference rejection schemes in that it utilizes but does not reject the host interference at its embedder. The perceptual analysis can be easily implemented in our scheme to achieve the maximum allowable level of embedding strength.
Recently, a self-embedding fragile watermark scheme based on reference-bits interleaving and adaptive selection of embedding mode was proposed. Reference bits are derived from the scrambled MSB bits of a cover image, and then are combined with authentication bits to form the watermark bits for LSB embedding. We find this algorithm has a feature of block independence of embedding watermark such that it is vulnerable to a collage attack. In addition, because the generation of authentication bits via hash function operations is not related to secret keys, we analyze this algorithm by a multiple stego-image attack. We find that the cost of obtaining all the permutation relations of $lcdot b^2$ watermark bits of each block (i.e., equivalent permutation keys) is about $(lcdot b^2)!$ for the embedding mode $(m, l)$, where $m$ MSB layers of a cover image are used for generating reference bits and $l$ LSB layers for embedding watermark, and $btimes b$ is the size of image block. The simulation results and the statistical results demonstrate our analysis is effective.
Compressed videos constitute 70% of Internet traffic, and video upload growth rates far outpace compute and storage improvement trends. Past work in leveraging perceptual cues like saliency, i.e., regions where viewers focus their perceptual attention, reduces compressed video size while maintaining perceptual quality, but requires significant changes to video codecs and ignores the data management of this perceptual information. In this paper, we propose Vignette, a compression technique and storage manager for perception-based video compression. Vignette complements off-the-shelf compression software and hardware codec implementations. Vignettes compression technique uses a neural network to predict saliency information used during transcoding, and its storage manager integrates perceptual information into the video storage system to support a perceptual compression feedback loop. Vignettes saliency-based optimizations reduce storage by up to 95% with minimal quality loss, and Vignette videos lead to power savings of 50% on mobile phones during video playback. Our results demonstrate the benefit of embedding information about the human visual system into the architecture of video storage systems.
154 - Shaowei Xie , Qiu Shen , Yiling Xu 2018
Immersive video offers the freedom to navigate inside virtualized environment. Instead of streaming the bulky immersive videos entirely, a viewport (also referred to as field of view, FoV) adaptive streaming is preferred. We often stream the high-quality content within current viewport, while reducing the quality of representation elsewhere to save the network bandwidth consumption. Consider that we could refine the quality when focusing on a new FoV, in this paper, we model the perceptual impact of the quality variations (through adapting the quantization stepsize and spatial resolution) with respect to the refinement duration, and yield a product of two closed-form exponential functions that well explain the joint quantization and resolution induced quality impact. Analytical model is cross-validated using another set of data, where both Pearson and Spearmans rank correlation coefficients are close to 0.98. Our work is devised to optimize the adaptive FoV streaming of the immersive video under limited network resource. Numerical results show that our proposed model significantly improves the quality of experience of users, with about 9.36% BD-Rate (Bjontegaard Delta Rate) improvement on average as compared to other representative methods, particularly under the limited bandwidth.
A great challenge to steganography has arisen with the wide application of steganalysis methods based on convolutional neural networks (CNNs). To this end, embedding cost learning frameworks based on generative adversarial networks (GANs) have been proposed and achieved success for spatial steganography. However, the application of GAN to JPEG steganography is still in the prototype stage; its anti-detectability and training efficiency should be improved. In conventional steganography, research has shown that the side-information calculated from the precover can be used to enhance security. However, it is hard to calculate the side-information without the spatial domain image. In this work, an embedding cost learning framework for JPEG Steganography via a Generative Adversarial Network (JS-GAN) has been proposed, the learned embedding cost can be further adjusted asymmetrically according to the estimated side-information. Experimental results have demonstrated that the proposed method can automatically learn a content-adaptive embedding cost function, and use the estimated side-information properly can effectively improve the security performance. For example, under the attack of a classic steganalyzer GFR with quality factor 75 and 0.4 bpnzAC, the proposed JS-GAN can increase the detection error 2.58% over J-UNIWARD, and the estimated side-information aided version JS-GAN(ESI) can further increase the security performance by 11.25% over JS-GAN.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا