Do you want to publish a course? Click here

Chemical enrichment of galaxy clusters from hydrodynamical simulations

150   0   0.0 ( 0 )
 Added by Luca Tornatore
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present cosmological hydrodynamical simulations of galaxy clusters aimed at studying the process of metal enrichment of the intra--cluster medium (ICM). These simulations have been performed by implementing a detailed model of chemical evolution in the Tree-SPH gd code. This model allows us to follow the metal release from SNII, SNIa and AGB stars, by properly accounting for the lifetimes of stars of different mass, as well as to change the stellar initial mass function (IMF), the lifetime function and the stellar yields. As such, our implementation of chemical evolution represents a powerful instrument to follow the cosmic history of metal production. The simulations presented here have been performed with the twofold aim of checking numerical effects, as well as the impact of changing the model of chemical evolution and the efficiency of stellar feedback.



rate research

Read More

The study of the metal enrichment of the intra-cluster and inter-galactic media (ICM and IGM) represents a direct means to reconstruct the past history of star formation, the role of feedback processes and the gas-dynamical processes which determine the evolution of the cosmic baryons. In this paper we review the approaches that have been followed so far to model the enrichment of the ICM in a cosmological context. While our presentation will be focused on the role played by hydrodynamical simulations, we will also discuss other approaches based on semi-analytical models of galaxy formation, also critically discussing pros and cons of the different methods. We will first review the concept of the model of chemical evolution to be implemented in any chemo-dynamical description. We will emphasise how the predictions of this model critically depend on the choice of the stellar initial mass function, on the stellar life-times and on the stellar yields. We will then overview the comparisons presented so far between X-ray observations of the ICM enrichment and model predictions. We will show how the most recent chemo-dynamical models are able to capture the basic features of the observed metal content of the ICM and its evolution. We will conclude by highlighting the open questions in this study and the direction of improvements for cosmological chemo-dynamical models of the next generation.
The uniformity of the intra-cluster medium (ICM) enrichment level in the outskirts of nearby galaxy clusters suggests that chemical elements were deposited and widely spread into the intergalactic medium before the cluster formation. This observational evidence is supported by numerical findings from cosmological hydrodynamical simulations, as presented in Biffi et al. (2017), including the effect of thermal feedback from active galactic nuclei. Here, we further investigate this picture, by tracing back in time the spatial origin and metallicity evolution of the gas residing at z=0 in the outskirts of simulated galaxy clusters. In these regions, we find a large distribution of iron abundances, including a component of highly-enriched gas, already present at z=2. At z>1, the gas in the present-day outskirts was distributed over tens of virial radii from the the main cluster and had been already enriched within high-redshift haloes. At z=2, about 40% of the most Fe-rich gas at z=0 was not residing in any halo more massive than 1e11 Msun/h in the region and yet its average iron abundance was already 0.4, w.r.t. the solar value by Anders & Grevesse (1989). This confirms that the in situ enrichment of the ICM in the outskirts of present-day clusters does not play a significant role, and its uniform metal abundance is rather the consequence of the accretion of both low-metallicity and pre-enriched (at z>2) gas, from the diffuse component and through merging substructures. These findings do not depend on the mass of the cluster nor on its core properties.
We present a study of the galaxy population predicted by hydrodynamical simulations for a set of 19 galaxy clusters based on the GADGET-2 Tree+SPH code. These simulations include gas cooling, star formation, a detailed treatment of stellar evolution and chemical enrichment, as well as SN energy feedback in the form of galactic winds. We compute the spectro-photometric properties of the simulated galaxies. All simulations have been performed for two choices of the stellar initial mass function: a standard Salpeter IMF, and a top-heavier IMF. Several of the observational properties of the galaxy population in nearby clusters are reproduced fairly well by simulations. A Salpeter IMF is successful in accounting for the slope and the normalization of the color-magnitude relation for the bulk of the galaxy population. Simulated clusters have a relation between mass and optical luminosity which generally agrees with observations, both in normalization and slope. We find that galaxies are generally bluer, younger and more star forming in the cluster outskirts, thus reproducing the observational trends. However, simulated clusters have a total number of galaxies which is significantly smaller than the observed one, falling short by about a factor 2-3. Finally, the brightest cluster galaxies are always predicted to be too massive and too blue, when compared to observations, due to gas overcooling in the core cluster regions, even in the presence of a rather efficient SN feedback.
Using chemical hydrodynamical simulations consistent with a Lambda-CDM model, we study the role played by mergers and interactions in the regulation of the star formation activity, colours and the chemical properties of galaxies in pairs. A statistical analysis of the orbital parameters in galaxy pairs (r <100 kpc/h) shows that the star formation (SF) activity correlates strongly with the relative separation and weakly with the relative velocity, indicating that close encounters (r <30 kpc/h) can increase the SF activity to levels higher than that exhibit in galaxies without a close companion. Analysing the internal properties of interacting systems, we find that their stability properties also play a role in the regulation the SF activity (Perez et al 2005a). Particularly, we find that the passive star forming galaxies in pairs are statistically more stable with deeper potential wells and less leftover gas than active star forming pairs. In order to compare our results with observations, we also build a projected catalog of galaxy pairs (2D-GP: rp <100 kpc/h and Vr <350 km/s), constructed by projecting the 3D sample in different random directions. In good agreement with observations (Lambas et al 2003), our results indicate that galaxies with rp < 25 kpc/h (close pairs) show an enhancement of the SF activity with respect to galaxies without a close companion. (Abridged.)
We assess the importance of AGN outflows with respect to the metal enrichment of the intracluster medium (ICM) in galaxy clusters. We use combined N-body and hydrodynamic simulations, along with a semi-numerical galaxy formation and evolution model. Using assumptions based on observations, we attribute outflows of metal-rich gas initiated by AGN activity to a certain fraction of our model galaxies. The gas is added to the model ICM, where the evolution of the metallicity distribution is calculated by the hydrodynamic simulations. For the parameters describing the AGN content of clusters and their outflow properties, we use the observationally most favorable values. We find that AGNs have the potential to contribute significantly to the metal content of the ICM or even explain the complete abundance, which is typically ~0.5 Z_sun in core regions. Furthermore, the metals end up being inhomogeneously distributed, in accordance with observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا