Do you want to publish a course? Click here

The 2003 Outburst of the X-ray Transient H 1743-322: Comparisons with the Black Hole Microquasar XTE J1550-564

200   0   0.0 ( 0 )
 Added by Jeffrey McClintock
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The bright X-ray transient H 1743-322 was observed daily by the Rossi X-ray Timing Explorer (RXTE) during most of its 8-month outburst in 2003. We present a detailed spectral analysis and a supporting timing analysis of all of these data, and we discuss the behavior and evolution of the source in terms of the three principal X-ray states defined by Remillard and McClintock. These X-ray results are complemented by Very Large Array (VLA) data obtained at six frequencies that provide quite complete coverage of the entire outburst cycle at 4.860 GHz and 8.460 GHz. We also present photometric data and finding charts for the optical counterpart in both outburst and quiescence. We closely compare H 1743-322 to the well-studied black-hole X-ray transient XTE J1550-564 and find the behaviors of these systems to be very similar. As reported elsewhere, both H 1743-322 and XTE J1550-564 are relativistic jet sources and both exhibit a pair of high-frequency QPO oscillations with a 3:2 frequency ratio. The many striking similarities between these two sources argue strongly that H 1743-322 is a black hole binary, although presently no dynamical data exist to support this conclusion.



rate research

Read More

59 - V. A. Arefiev 2004
Results of broadband INTEGRAL and RXTE observations of the Galactic microquasar XTE J1550-564 during outburst in spring 2003 are presented. During the outburst the source was found in a canonical low/hard spectral state.
We report on the formation and evolution of two large-scale, synchrotron-emitting jets from the black hole candidate H 1743-322 following its reactivation in 2003. In November 2003 after the end of its 2003 outburst, we noticed, in observations with the Australia Telescope Compact Array, the presence of a new and variable radio source about 4.6 to the East of H 1743-322, that was later found to move away from H 1743-322. In February 2004, we detected a radio source to the West of H 1743-322, symmetrically placed relative to the Eastern jet. In 2004, follow-up X-ray observations with {em Chandra} led to the discovery of X-ray emission associated with the two radio sources. This likely indicates that we are witnessing the interaction of relativistic jets from H 1743-322 with the interstellar medium causing in-situ particle acceleration. The spectral energy distribution of the jets during the decay phase is consistent with a classical synchrotron spectrum of a single electron distribution from radio up to X-rays, implying the production of very high energy ($>$ 10 TeV) particles in those jets. We discuss the jet kinematics, highlighting the presence of a significantly relativistic flow in H 1743-322 almost a year after the ejection event.
89 - D. Hannikainen 2001
We report multifrequency radio observations of XTE J1550-564 obtained with the Molonglo Observatory Synthesis Telescope and the Australia Telescope Compact Array at the time of its discovery and subsequent hard and soft X-ray outburst in 1998 September. A large radio flare was observed, peaking about 1.8 days after the X-ray flare. In addition, we present Australian Long Baseline Array images obtained shortly after the maximum of the radio flare which show evolving structure. The apparent separation velocity of the two outermost components is v>2c.
248 - R. K. Jain 2001
We report optical, infrared, and X-ray light curves for the outburst, in 2000, of the black hole candidate XTE J1550-564. We find that the start of the outburst in the H and V bands precedes that seen in the RXTE All Sky Monitor by 11.5 +/- 0.9 and 8.8 +/- 0.6 days, respectively; a similar delay has been observed in two other systems. About 50 days after the primary maxima in the VIH light curves, we find secondary maxima, most prominently in H. This secondary peak is absent in the X-ray light curve, but coincides with a transition to the low/hard state. We suggest that this secondary peak may be due to non-thermal emission associated with the formation of a jet.
52 - J.M. Miller 2001
On two occasions, we obtained nearly simultaneous ~ 4 kilosecond snapshot observations of the Galactic black hole and microquasar XTE J1550-564 with Chandra and RXTE near the peak of its May, 2000 outburst. The low-energy sensitivity of Chandra and the resolution of the High Energy Transmission Grating Spectrometer (HETGS), coupled with the broad energy range and large collecting area of RXTE, have allowed us to place constraints on the outburst accretion flow geometry of this source in the ``intermediate X-ray state. The 0.65-25.0 keV continuum spectra are well-described by relatively hot (kT ~ 0.8 keV) accretion disk and hard (Gamma ~ 2.3) coronal power-law components. Broad, relatively strong Fe K-alpha emission line (EW ~170 eV) and smeared absorption edge components consistent with Fe XXV are strongly required in joint spectral fits. The resolution of the Chandra/HETGS reveals that the broad Fe K-alpha emission lines seen clearly in the individual RXTE spectra are not due to an intrinsically narrow line.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا