The decays eta, eta-prime --> pi+ pi- l+ l- (with l = e, mu) are investigated within a chiral unitary approach which combines the chiral effective Lagrangian with a coupled-channels Bethe-Salpeter equation. Predictions for the decay widths and spectra are given.
Various decays of eta and eta-prime are investigated within the framework of U(3) chiral effective field theory in combination with a relativistic coupled-channels approach. Final state interactions are included by deriving s- and p-wave interaction kernels for meson-meson scattering from the chiral effective Lagrangian and iterating them in a Bethe-Salpeter equation. Very good agreement with experimental data is achieved.
Using a sample of $1.3times 10^9$ $J/psi$ events collected with the BESIII detector, we report the first observation of $eta^{prime}topi^{+}pi^{-}pi^{+}pi^{-}$ and $eta^{prime}topi^{+}pi^{-}pi^{0}pi^{0}$. The measured branching fractions are $mathcal{B}$($eta^{prime}topi^{+}pi^{-}pi^{+}pi^{-}$) = $(8.53pm0.69({rm stat.})pm0.64({rm syst.}))times10^{-5}$ and $mathcal{B}$($eta^{prime}topi^{+}pi^{-}pi^{0}pi^{0}$) = $(1.82pm0.35({rm stat.})pm0.18({rm syst.}))times10^{-4}$, which are consistent with theoretical predictions based on a combination of chiral perturbation theory and vector-meson dominance.
We investigate the rare radiative eta decay modes eta -> pi+ pi- gamma gamma and eta -> pi0 pi0 gamma gamma within the framework of chiral lagrangians at o(p^4) and present photon spectra for both processes.
Based on a sample of $1.31 times 10^9$ $J/psi$ events collected with the BESIII detector, an amplitude analysis of the isospin-violating decays $eta^prime rightarrow pi^+pi^-pi^0$ and $eta^prime rightarrow pi^0pi^0pi^0$ is performed. A significant $P$-wave contribution from $eta^prime rightarrow rho^{pm} pi^{mp}$ is observed for the first time in $eta^prime rightarrow pi^+pi^-pi^0$. The branching fraction is determined to be ${mathcal B}(eta^prime rightarrow rho^{pm}pi^{mp})=(7.44pm0.60pm1.26pm1.84)times 10^{-4}$, where the first uncertainty is statistical, the second systematic, and the third model dependent. In addition to the nonresonant $S$-wave component, there is a significant $sigma$ meson component. The branching fractions of the combined $S$-wave components are determined to be ${mathcal B}(eta^prime rightarrow pi^+pi^-pi^0)_S=(37.63pm0.77pm2.22pm4.48)times 10^{-4}$ and ${mathcal B}(eta^prime rightarrow pi^0pi^0pi^0)=(35.22pm0.82pm2.54)times 10^{-4}$, respectively. The latter one is consistent with previous BESIII measurements.
The hadronic decays eta, eta-prime -> 3 pi and eta-prime -> eta pi pi are investigated within the framework of U(3) chiral effective field theory in combination with a relativistic coupled-channels approach. Final state interactions are included by deriving s- and p-wave interaction kernels for meson-meson scattering from the chiral effective Lagrangian and iterating them in a Bethe-Salpeter equation. Very good overall agreement with currently available data on decay widths and spectral shapes is achieved.